98. Expandability and Product Spaces

By Yûkiti KATUTA

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

Introduction. Let m be an infinite cardinal number. A to-1. pological space X is said to be m-expandable (resp. discretely m-ex*pandable*), if for every locally finite (resp. discrete) collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X with $|\Lambda| \leq \mathfrak{m}$, where $|\Lambda|$ denotes the power of Λ , there exists a locally finite collection $\{G_{\lambda} | \lambda \in \Lambda\}$ of open subsets of X such that $F_{\lambda} \subset G_{\lambda}$ for every $\lambda \in \Lambda$. A collection $\{G_{\lambda} | \lambda \in \Lambda\}$ of subsets of a topological space is said to be hereditarily conservative (H.C.) if every collection $\{H_{\lambda} | \lambda \in A\}$, such that $H_{\lambda} \subset G_{\lambda}$ for every $\lambda \in A$, is closure preserving. A topological space X is said to be H.C. m-expandable (resp. discretely H.C. m-expandable), if for every locally finite (resp. discrete) collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X with $|\Lambda| \leq \mathfrak{m}$, there exists a hereditarily conservative collection $\{G_{\lambda} | \lambda \in A\}$ of open subsets of X such that $F_{\lambda} \subset G_{\lambda}$ for every $\lambda \in \Lambda$. A topological space is said to be *expandable*, *discrete*ly expandable, H.C. expandable or discretely H.C. expandable, respectively, if it is m-expandable, discretely m-expandable, H.C. m-expandable or discretely H.C. m-expandable for every cardinal number m ([1], [2]).

In [1] and [2], Krajewski and Smith showed the following:

(i) X is \aleph_0 -expandable if and only if X is countably paracompact.

(ii) X is m-expandable if and only if X is discretely m-expandable and countably paracompact.

(iii) X is collectionwise normal if and only if X is discretely expandable and normal.

Let $T(\mathfrak{m})$ be a set whose power is \mathfrak{m} and t_0 be a distinguished element of $T(\mathfrak{m})$. On $T(\mathfrak{m})$ we define a topology by the following: A subset of $T(\mathfrak{m})$ is open if and only if it dose not contain t_0 or its complement is finite. Then $T(\mathfrak{m})$ is a compact Hausdorff space. If X is a topological space, then in the product space $X \times T(\mathfrak{m})$ let $X_0 = X \times \{t_0\}$.

The main purpose of this paper is to show the following theorem which is a generalization of Martin [3, Lemma 1].

Theorem 1. The following statements are equivalent for a topological space X.

(a) X is m-expandable.

(b) $X \times T(\mathfrak{m})$ is \mathfrak{m} -expandable.