89. On Normal Approximate Spectrum. IV

By Masatoshi FuJII*) and Ritsuo NAKAMOT0**)

(Comm. by Kinjir5 KUNUGI, M. J. A., June 12, 1973)

1. Introduction. In our previous notes [3], [5], [6] and [7], we have discussed some properties of the normal approximate spectra of operators on Hilbert space $\tilde{\varphi}$. A complex number λ is an approximate *propervalue* of an operator T on $\tilde{\varphi}$ if there is a sequence of unit vectors in \tilde{p} such that

(*) $||(T-\lambda)x_n||\rightarrow 0 \quad (n\rightarrow\infty).$

Then sequence $\{x_n\}$ is called *approximate propervectors* belonging to λ . The set $\pi(T)$ of all approximate propervalues is called the approximate spectrum of T. If there is a sequence $\{x_n\}$ of unit vectors for λ and T satisfying $(*)$ and

(**) $\|(T-\lambda)^*x_n\|\rightarrow 0 \quad (n\rightarrow\infty),$

the λ is called a normal approximate propervalue of T and $\{x_n\}$ normal approximate propervectors. The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T . Some equivalent conditions are discussed in [3], [5] and [7].

In the present note, we shall prove three theorems in terms of the normal approximate spectra in \S 3-5. In the proofs, we shall use the Berberian representation in [1], which is sketched in $\S 2$.

2. The Berberian representation. Let $\mathfrak B$ be the set of all bounded sequences of vectors of $\hat{\mathcal{D}}$. Then \mathcal{B} is a vector space with respect to the operations:

and

$$
\{x_n\} + \{y_n\} = \{x_n + y_n\}
$$

$$
\alpha \{x_n\} = \{\alpha x_n\}.
$$

Let (for a fixed Banach limit Lim)

 $\mathfrak{N} = \{ \{x_n\} \in \mathfrak{B} \ ; \ \textrm{Lim } (x_n | y_n) = 0 \ \textrm{for all } \ y_n \in \mathfrak{B} \},$

and let $\mathfrak{B}=\mathfrak{B}/\mathfrak{N}$. Then \mathfrak{B} becomes an inner product space by

$$
(\{x_n\} + \mathfrak{N} | \{y_n\} + \mathfrak{N}) = \mathbf{Lim} (x_n | y_n).
$$

If $x \in \mathfrak{D}$, then $\{x\}$ means the sequence of all whose terms are x.

$$
(x'|y') = (x|y)
$$

for $x' = \{x\} + \mathcal{R}$ and $y' = \{y\} + \mathcal{R}$, so that the mapping $x \rightarrow x'$ is an isometric linear map of \circledcirc onto a closed subspace \circledcirc' of \circledast . Let \circledast be the

^{*)} Osaka Kyoiku University.

^{**)} Ibaraki University (Hitachi).