89. On Normal Approximate Spectrum. IV

By Masatoshi FUJII*) and Ritsuo NAKAMOTO**)

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1973)

1. Introduction. In our previous notes [3], [5], [6] and [7], we have discussed some properties of the normal approximate spectra of operators on Hilbert space \mathfrak{G} . A complex number λ is an *approximate propervalue* of an operator T on \mathfrak{G} if there is a sequence of unit vectors in \mathfrak{G} such that

 $\|(T-\lambda)x_n\| \to 0 \qquad (n \to \infty).$

Then sequence $\{x_n\}$ is called *approximate propervectors* belonging to λ . The set $\pi(T)$ of all approximate propervalues is called the *approximate* spectrum of T. If there is a sequence $\{x_n\}$ of unit vectors for λ and T satisfying (*) and

$$(**) \qquad \qquad \|(T-\lambda)^*x_n\| \to 0 \qquad (n\to\infty),$$

the λ is called a normal approximate propervalue of T and $\{x_n\}$ normal approximate propervectors. The set $\pi_n(T)$ of all normal approximate propervalues of T is called the normal approximate spectrum of T. Some equivalent conditions are discussed in [3], [5] and [7].

In the present note, we shall prove three theorems in terms of the normal approximate spectra in §§ 3–5. In the proofs, we shall use the Berberian representation in [1], which is sketched in § 2.

2. The Berberian representation. Let \mathfrak{B} be the set of all bounded sequences of vectors of \mathfrak{G} . Then \mathfrak{B} is a vector space with respect to the operations:

and

$$\{x_n\} + \{y_n\} = \{x_n + y_n\}$$
$$\alpha\{x_n\} = \{\alpha x_n\}.$$

Let (for a fixed Banach limit Lim)

$$\mathfrak{M} = \{\{x_n\} \in \mathfrak{B}; \lim_{n \to \infty} (x_n | y_n) = 0 \text{ for all } y_n \in \mathfrak{B}\},\$$

and let $\mathfrak{P} = \mathfrak{B}/\mathfrak{N}$. Then \mathfrak{P} becomes an inner product space by

$$(\{x_n\}+\mathfrak{N}|\{y_n\}+\mathfrak{N})=\operatorname{Lim}(x_n|y_n)$$

If $x \in \mathfrak{H}$, then $\{x\}$ means the sequence of all whose terms are x.

$$(x'|y') = (x|y)$$

for $x' = \{x\} + \Re$ and $y' = \{y\} + \Re$, so that the mapping $x \to x'$ is an isometric linear map of \mathfrak{F} onto a closed subspace \mathfrak{F}' of \mathfrak{F} . Let \mathfrak{R} be the

^{*)} Osaka Kyoiku University.

^{**)} Ibaraki University (Hitachi).