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1. Introduction. Very recently, Ifantis and Kouris [1] show, a
Hilbert space approach is powerful to give bounds of roots of algebraic
equations ; actually, they show that the operator bound of a perturba-
tion of the simple unilateral shift by a dyad gives certain bounds of
roots. Inthe presentnote, giving three norms on n-dimensional vector
space, we shall obtain certain bounds of roots estimating operator
norms of companion matrices.

For a given algebraic equation

(1) P(R)=2"+a,2" '+ - - +0,=0,
we associate the companion matrix

—Qp —Qpy =y e —Qy —O

1 0 0 e 0 0
(2) T=| 0 1 0 e 0 0 |

0 0 0 T | 0

cf. [2], esp. Chapter VII. It is well-known that the spectrum o(T) of
T coincides with the set of all roots of (1), i.e.

(3) o(T)={z; p(2)=0}.
From (3), we have
(4) zI=r(D =T,

for any root z of (1), where »(T) is the spectral radius of T: »(T)
=8UD;c,(r, |2| and ||T] is the operator norm of T': | T|=sup,;-. || TS|l
considering T as an operator on the n-dimensional Banach space H.
2. Carmichael-Mason’s theorem. Here we regard H as the n-
dimensional unitary space with orthonormal basis e, ---,¢,. For z,

y e H, we put (xQy)z=(z,y)x for ze H. Then we can express the com-
panion matrix T of (1) as

(5) T=V—e&u,
where
(6) u=ake,+---+afe,

and



