8. Paracompactness of Topological Completions

By Tadashi ISHII Shizuoka University

(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1974)

1. Introduction. All spaces are assumed to be completely regular T_2 unless otherwise specified. This paper is mainly concerned with paracompactness of the completion $\mu(X)$ of a space X with respect to its finest uniformity μ . Such completion of a space X is called the topological completion of X (or the completion in the sense of Dieudonné). Following Morita [12], a space X is said to be pseudoparacompact (resp. pseudo-Lindelöf etc.) if $\mu(X)$ is paracompact (resp. Lindelöf etc.). Since for any M-space X $\mu(X)$ is a paracompact M-space ([12]), every M-space is pseudo-paracompact.

The purpose of this paper is to study some properties of pseudoparacompact spaces. The details will be published elsewhere.

2. Characterizations of pseudo-paracompact spaces. An open covering $\mathfrak{O}=\{O_{\alpha}\}$ of a space X is said to be extendable to $\mu(X)$ if there exists an open covering $\widetilde{\mathfrak{O}}=\{\widetilde{O}_{\alpha}\}$ of $\mu(X)$ such that $O_{\alpha}=\widetilde{O}_{\alpha}\cap X$ for each α . We note that every normal open covering of X is extendable to $\mu(X)$ as a normal open covering (cf. [9, (I) Lemma 8 and (II) Lemma 1]).

Now let $\{\mathfrak{U}_{\lambda} | \lambda \in \Lambda\}$ be the set of all the normal open coverings of a space X. A filter $\mathfrak{F} = \{F_{\alpha}\}$ in X is said to be weakly Cauchy with respect to the uniformity μ if for any $\lambda \in \Lambda$ there exists $U \in \mathfrak{U}_{\lambda}$ such that $U \cap F_{\alpha} \neq \phi$ for every α . In other words, a filter \mathfrak{F} is weakly Cauchy if for any $\lambda \in \Lambda$ there exists a stronger filter \mathfrak{F}_{λ} than \mathfrak{F} such that $L \subset U$ for some $U \in \mathfrak{U}_{\lambda}$ and $L \in \mathfrak{F}_{\lambda}$. We state first the necessary and sufficient conditions for a space X to be pseudo-paracompact, some of which are the modifications of Corson's theorem [1] for the characterizations of paracompact spaces.

Theorem 2.1. For a space X, the following conditions are equivalent.

- (a) X is pseudo-paracompact.
- (b) Every open covering of X which is extendable to $\mu(X)$ is a normal covering.
 - (c) The product of X with every compact space is pseudo-normal.
- (d) Every weakly Cauchy filter in X with respect to μ is contained in some Cauchy filter with respect to μ .
 - (e) If \Re is a filter in X such that the image of \Re has a cluster