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1. Introduction.

The purpose of this note is to study the asymptotic eigenvalue
distribution for the following equation
1.1) Au4ru=2ipu r>0.
Here A is a positive elliptic differential operator with constant co-
efficients defined on R and p(x) is a positive function. When A4 is a
homogeneous elliptic operator with a non-smooth p(x), the distribution
of the eigenvalues of (1.1) was discussed in Birman and Solomjak [3],
Birman and Borzov [4] and Rosenbljum [5]. In this note we will study
the asymptotic distribution including the case that A is an inhomo-
geneous operator. The obtained results can be applied to the operator
with a large parameter 7>0
a.2) Au—hp(@)u=pu.
In fact, it was shown in Birman [2] that the number of negative eigen-
values less than r of equation (1.2) coincides with the number of
eigenvalues less than % of equation (1.1).

Only the theorems and an outline of proofs are presented here and
details will be published elsewhere.

2. Main Theorems.

Let A(D)= > a,D*bean elliptic operator with constant coefficients

lalsm

defined on R*. We suppose that:

(1) A®>0  for £eR";

(ii) £=0 is the only zero of A(¢) of even order m,<m.
The principal part of A(D) is denoted by A,(D).

We denote by K(l,a) (1>>0,a>0) the set of functions p(x) which
satisfy the following conditions:

(i) p(x) is decomposed into p(x) =p,(x) +p,(2) ;
(ii) p,(2) is a positive smooth function with lim |z|'p,(x)=a;
|z|—o

(iii) p,(x) is a nonnegative function with compact support;

(iv) p,(x) e L,, where p=1 if m>n and p>ll’— if m<m.
m

Let N,(2) be the number of eigenvalues less than A of equation (1.1).



