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Introduction. In the present paper we shall construct the funda-
mental solution U($) for a degenerate parabolic pseudo-differential
equation of the form

Lu= 3u + p(t x, D)u--O in (0 T) R
(0.1)

U[t=0--U
where p(t x, D) is a pseudo-differential operator of class ’(S.) which
satisfies conditions (cf. [1], [5])"

(i) There exist constant C and m (0__< m’ m) such that
(0.2) Rep(t; x,)C(}’ uniformly in t (OtT).

(ii) For any multi index a--(a,. ., an), fl=(fl," ’, fin) there exists
a constant C.. such that

(0.3) p(t x, )/Re p(t x, )[C,,<>
uniformly in t (0g t T),

where p("(t x,)-(3/3)". i3/3xx) ..( i3/3Xn)’p(t x,)

The fundamental solution U(t) will be found as a pseudo-differ-
ential operator of class S. with parameter t. Then the solution
the Cauchy problem (0.1) is given by u(t)-U(t)Uo for u0 e L and more-
over for u0 e L (lp) in case p=l, using that operators of class
,. are bounded in L or 0gpgl, in L’ for 0gl, p=l (see [1]-

[3]).
The solution U(t) is given in the form U(t)-e(t,O; x,D) where

e(t, s; x, D) is the solution of an operator equation
L,e(t,s;x,D)=O in t>s (ONs<tNT)
e(t, s x, D)t= I,

which can be reduced to an integral equation of the form

(0.a) (t, ; x, D) + v(t, ; x, D) +[:(t, ; x, D)V(, x, D)d=0,

where r(t, s; x, D) is a known operator of class S,: (.-)(+’. To solve
(0.4), we shall calculate the symbol for multi product of pseudo-differ-
ential operators in precise form by using oscillatory integrals in [4]
and [6].

1. Notations and Theorem. We shall denote by S:(0p1,


