71. A Note on Nonlinear Differential Equation in a Banach Space

By Shigeo KATO Kitami Institute of Technology, Kitami, Hokkaido (Comm. by Kinjirô KUNUGI, M. J. A., April 18, 1974)

1. Let E be a Banach space with the dual space E^* . The norms in E and E^* are denoted by $\|\cdot\|$. We denote by S(u, r) the closed sphere of center u with radius r.

It is our object in this note to give a sufficient condition for the existence of the unique solution to the Cauchy problem of the form (1.1) $u'(t) = f(t, u(t)), \quad u(0) = u_0 \in E,$

where f is a E-valued mapping defined on $[0, T] \times S(u_0, r)$.

We compare the differential equation (1.1) with the scalar equation (1.2) w'(t) = g(t, w(t)),

where g(t, w) is a function defined on $(0, a] \times [0, b]$ which is measurable in t for fixed w, and continuous monotone nondecreasing in w for fixed t. We say w is a solution of (1.2) on an interval I contained in [0, a] if w is absolutely continuous on I and if w'(t) = g(t, w(t)) for a.e. $t \in I^{\circ}$, where I° is the set of all interior points of I.

We assume that g satisfies the following conditions:

There exists a function m defined on (0, a) such that g(t, w)

- (i) $\leq m(t)$ for $(t, w) \in (0, a) \times [0, b]$ and for which m is Lebesgue integrable on (ε, a) for every $\varepsilon > 0$.
 - For each $t_0 \in (0, a]$, $w \equiv 0$ is the only solution of the equation
- (ii) (1.2) on $[0, t_0]$ satisfying the conditions that $w(0) = (D^+w)(0) = 0$, where D^+w denotes the right-sided derivative of w.
- 2. Let g be as in Section 1. Then we have the following lemmas.

Lemma 2.1. Let $\{w_n\}$ be a sequence of functions from [0,a] to [0,b] converging pointwise on [0,a] to a function w_0 . Let M>0 such that $|w_n(t)-w_n(s)| \leq M |t-s|$ for $s,t \in [0,a]$ and $n \geq 1$. Suppose further that for each $n \geq 1$

$$w'_n(t) \leq g(t, w_n(t))$$
 for $t \in (0, a)$

such that $w'_n(t)$ exists. Then w_0 is a solution of (1.2) on [0, a].

For a proof see [4].

Lemma 2.2. Let M>0 and let $\{w_n\}$ be a sequence of functions from [0,a] to [0,b] with the property that $|w_n(t)-w_n(s)| \leq M|t-s|$ for all $s,t\in [0,a]$ and $n\geq I$. Let $w=\sup_{n\geq 1}w_n$, and suppose that $w'_n(t)\leq g(t,w_n(t))$ for $t\in (0,a)$ such that $w'_n(t)$ exists. Then w is a solution of (1.2) on [0,a].