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1. Introduction. One of the useful tools for studying the struc-
ture of a locally compact group or Banach .-algebra A is the dual space

of all its equivalence classes of irreducible representations in Hilbert
space. In this paper, we deal with the Borel structure of a dual space
for a topological .-algebra. It will be shown that the dual space (G)
of the topological .-algebra .q)(G), where G is a a-compact Lie group,
coinsides with the dual space G of the a-compact Lie group G and that
if in addition G satisfies some conditions the dual space _(G) is an an-
alytic Borel space.

From these results, we shall conclude that a connected semi-simple
Lie group and a connected nilpotent Lie group are type 1.

For locally convex spaces and their related notions, see [6] and for
Borel structures and their related notions, see [4]. The proofs are
omitted, and the details will appear elsewhere. The author would like
to express his thanks Prof. 0. Takenouchi for his helpful comments.

2. Topological algebra. A topological algebra is an algebra
and a topological vector space over the complex number field such that
ring multiplication is jointly continuous. A topological algebra E
with a mapping of E into itself is called a topological ,-algebra if the
following conditions are satisfied" (1) (x*)---x, (2) (xoy)*-x*oy*, (3)
(x+ y)*-- x* + y*, (4) (2x)*-]x* for every x, y e E and scalar 2. By a
representation, we mean a mapping T of E into _L(H, H), the set of all
continuous linear mapping of a Hilbert space H into itself, which satis-
fies the following conditions" (1) T(x + y)--T(x)/ T(y), (2) T(2x)--2T(x),
(3) T(xoy)= T(x)T(y), (4) T(x*)= T(x)* for every x, y e E and scalar 2.
A representation is said to be cyclic if there exists an element h0 (which
is called a cyclic element for T) in the Hilbert space H such that the
set {T(x)holx e E} is dense in H. The continuity, the irreducibility and
the equivalency are defined similarly to the case of the unitary represen-
tations of a topological group. A unitary representation U, of a topolo-
gical group G in a Hilbert space H, is said to be continuous at go if
U(g)h-oU(go)h as ggo in G for every h e H.

In what follows by a representation, we shall mean a continuous
representation.


