84. Extremely Amenable Transformation Semigroups. II

By Kôkichi SAKAI

(Comm. by Kinjirô KUNUGI, M. J. A., June 11, 1974)

Introduction. Let S be a semigroup and X a nonvoid set. Then we shall say that the pair (S, X) is a transformation semigroup if for every $s \in S$ there corresponds a map: $X \ni x \mapsto sx \in X$ such that s(tx)=(st)x for all s, t in S and x in X. Let B(X) be the Banach algebra of all real valued bounded functions on X with the supremum norm and $B(X)^*$ the conjugate Banach space of B(X). For every $s \in S$ define the map $L_s: B(X) \to B(X)$ by $L_s f = {}_s f$ for $f \in B(X)$, where ${}_s f(x)$ = f(sx) for x in X. Then we have $L_s L_t = L_{ts}$ and $||L_s|| \le 1$ for all s, t in S. The map $L: s \mapsto L_s$ is called the left regular antirepresentation of S on B(X). $\varphi \in B(X)^*$ is a mean on B(X) if $\inf \{f(x) : x \in X\} \leq \varphi(f)$ $\leq \sup \{f(x) : x \in X\}$ for all $f \in B(X)$. If φ is a mean on B(X), we have $\|\varphi\| = \varphi(I_X) = 1$ where I_X is the constant one function on X. $\varphi \in B(X)^*$ is called *invariant* if $\varphi(sf) = \varphi(f)$ for all $(s, f) \in S \times B(X)$. $\varphi \in B(X)^*$ is multiplicative if $\varphi(f \circ g) = \varphi(f) \cdot \varphi(g)$ for all $f, g \in B(X)$. By βX denote the set of all multiplicative means on B(X), which is a *w*^{*}-compact subset of $B(X)^*$. For every $x \in X$ define $\delta_x \in \beta X$ by $\delta_x(f)$ = f(x) for all $f \in B(X)$ and denote by δ the map: $X \ni x \mapsto \delta_x \in \beta X$. Now we shall say a transformation semigroup (S, X) is extremely amenable if there is a multiplicative invariant mean on B(X).

On extremely amenable transformation semigroups they are investigated by E. Granirer in [2] and by the author in [6]. In this paper, using the results in [2] and [6], we shall give various characterizations of extremely amenable transformation semigroups by means of the so-called "fixed-point property", "multiplicative invariant extension property" and "Reiter-Glicksberg's inequality". In §4 we note addenda to my papers [6] and [7].

§ 1. Fixed-point property. We say a transformation semigroup (S, X) has a *fixed-point* if there is some x_0 in X such that $sx_0 = x_0$ for all $s \in S$. A transformation semigroup (S, Z) is called *compact* if Z is a compact Hausdorff space and for every $s \in S$ the map: $Z \ni z \mapsto sz \in Z$ is continuous. For example, for every $(s, \varphi) \in S \times \beta X$ define $s\varphi \in \beta X$ by $s\varphi(f) = \varphi(sf)$ for $f \in B(X)$. Then $(S, \beta X)$ is compact. Clearly (S, X) is extremely amenable if and only if $(S, \beta X)$ has a fixed-point. Let (S, X) and (S, Y) be transformation semigroups. A map $\sigma: X \to Y$ is called a *homomorphism* of (S, X) to (S, Y) if $s\sigma(x) = \sigma(sx)$ for all $(s, x) \in S \times X$.