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78. On K. Yosida’s Class (A) of Meromorphic Functions

By Shinji YAMASHITA
Tokyo Metropolitan University

(Comm. by Kdsaku YOSIDA, M. J. A., June 11, 1974)

1. Introduction. The class (4) in K. Yosida’s sense [5] consists
of all functions f meromorphic in the plane C: |2|< + co such that the
family {f.},ae C, of functions f,(?)=f(z+a),z€C, is normal in the
sense of P. Montel in C. We set k(f)=sup,cc f*(2) for f € (A), where
f*@R=|f'®]/A+|f(@P; we know that k(f)<+ oo [5, Theorem 1].
Plainly, k(f)>0 if and only if f is non-constant. Given a function f
meromorphic in C and a point z € C, let u(z)=u(z, f) be the supremum
of »>0 such that f is univalent in the disk D(z, 7)={w e C; |lw—2z|<7};
if such an r does not exist, we set u(2)=u(z, f)=0. Then u(z)=0 if
and only if f*(2)=0. Except for the case that f is linear, u(z)<+ oo
at each ze C. Furthermore, a non-linear f is univalent in D(z, u(z))
and the function u is continuous in C (Lemma). Here and elsewhere
a meromorphic function f is called non-linear if f is non-constant and
not linear. We begin with

Theorem 1. Given a non-linear f of class (4), we have at each
zeC,

(1) J*(@) =32/ k(fYu(z, f).

Of course, the estimate (1) has the good meaning if u(z,f)
<az*/{32Kk(f)}. As an application of Theorem 1 we know that u(z,, f)
—0 implies f*(z,)—0 for each sequence of points {#z,}CC converging
to a point of C or else to the point at infinity. However, the converse
is not valid; the exponential function E(z)=e* belongs to (4) with
u(z, E)=n at each z ¢ C but E*(n)—0 as n— + oo, n being positive in-
tegers.

Our next result concerns the derived function.

Theorem 2. Given a non-linear f of class (A), we have at each
zeC,

(2) J*@=2[min {k(), uz, NI +1,
where f™*(2)=|f"(2)|/A+|f'@P.

The function E € (4) has the property that E’ ¢ (4), which suggests
the following application of Theorem 2. We have f’ ¢ (4) if fe(4)
and if inf ., u(z, f)>0 for a certain constant R>0. Indeed, f/* is
bounded in |2|>R by (2), while f’* is bounded in |z|<2R because f'* is
continuous in C, whence f’* is bounded in C. Therefore f’ ¢ (4) by



