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Introduction. The calculus of multiple symbols which has been
developed in Kumano-go [1] enables us to construct the fundamental
solution of parabolic equations only by symbol calculus (see C. Tsutsumi
[4]). The purpose o the present paper is to show that a formal unda-
mental solution o a parabolic system has an asymptotic expaasion in
a class of pseudo-differential operators ( 2) and to construct a funda-
mental solution with the same expansion ( 3). The method of con-
struction is the same as one used in C. Tsutsumi [4] for single equations.

1. Notations and a lemma. We shall denote by S where -m+ and 0gpl, the set of all MM matrices p(x,) with
components p(x, ) e C(R R) which satisfy the inequality

ij()

where (--(1+)/ and " (x,)=3Dp (x ) We denote byij() ij

]p(x, ) the norm of the matrix, that is,
tp(x, )= sup p(x, )y/]y

OCyC

and define semi-norms p]. by
[p[. max sup ](")(x,)l (}-+"-’()

Then S,. is a Frchet space with these semi-norms. By t(S,.) we de-
note a set of all matrices p(t;x, )e S, which are continuous with
respect to parameter t or 0< t< T. By w-t.(S,.) we denote a set of
all matrices p(t, s; x, )e S, which are continuous with respect to pa-
rameter t and s or 0stT with weak topology o S, defined as
follows (see H. Kumano-go and C. Tsutsumi [2])" we say {p(x,)}=o
cS, converges weakly to p(x, ) e S,, if {p(x, )}]=0 is a bounded set

(") ] uniformly on R K or everyof S, and )(") (x, ) p()(x, ) as
a, fl and compact set K R.

When p(x, ) S, =1, 2, ..., ], we denote by p(x, )p(x,)
p(x, ) the symbol of the product PP...P of pseudo-differential

operators P=p(x, D) which has the form (see Kumano-go [1])
p(x, )p(x,) p(x, )
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