106. The Whitehead Theorems in Shape Theory

By Kiiti Morita

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1974)

§1. Introduction. Recently the notion of shape which was originally introduced by K. Borsuk [2] for compact metric spaces has been extended to the case of topological spaces by S. Mardešić [3]. In this paper we shall use the notion of shape in the sense of Mardešić [3]. As in our previous paper [6], let $\pi_n(X, A, x_0)$ be the *n*-th (Čech) homotopy pro-group of a pair (X, A, x_0) of pointed topological spaces and $H_n(X, A)$ the *n*-th (Čech) homology pro-group of a pair (X, A) of topological spaces. For a continuous map $f: (X, A, x_0) \rightarrow (Y, B, y_0)$ let us denote by $\pi_k(f)$ or $H_k(f)$ the induced morphism of the *k*-th homotopy or homology pro-groups.

In this paper we shall establish the following theorems as analogues of the classical Whitehead theorems.

Theorem 1. Let (X, x_0) and (Y, y_0) be connected pointed spaces and let $f: (X, x_0) \rightarrow (Y, y_0)$ be a continuous map. For $n \ge 2$ let us consider the following conditions.

(i) $\pi_k(f): \pi_k(X, x_0) \rightarrow \pi_k(Y, y_0)$ is an isomorphism for $1 \leq k < n$ and an epimorphism for k=n. (ii) $H_k(f): H_k(X, x_0) \rightarrow H_k(Y, y_0)$

is an isomorphism for $1 \leq k < n$ and an epimorphism for k=n.

Then (i) implies (ii), and conversely, if $\pi_1(X, x_0) = 0$ and $\pi_1(Y, y_0) = 0$, (ii) implies (i).

Theorem 2. Let (X, x_0) and (Y, y_0) be connected pointed spaces of finite dimension and let $n_0 = \max(1 + \dim X, \dim Y)$. If $f: (X, x_0)$ $\rightarrow (Y, y_0)$ is a continuous map such that the induced morphism $\pi_k(f)$: $\pi_k(X, x_0) \rightarrow \pi_k(Y, y_0)$ is a bimorphism for $1 \le k < n_0$ and an epimorphism for $k = n_0$, then f induces a shape equivalence.

In [4] Mardešić deduced the conclusion of Theorem 2 under a condition that $\pi_k(f)$ is a bimorphism for $1 \leq k \leq n_0$ and an epimorphism for $k=n_0+1$. For the case of compact metric spaces the same result as in Mardešić [4] was obtained earlier by M. Moszyńska [9].

§ 2. Preliminaries. Let $f: (X, x_0) \to (Y, y_0)$ be a continuous map of pointed topological spaces. Let (Z, x_0) be the mapping cylinder of fwhich is obtained from the topological sum $(X \times I) \cup Y$ (where I is the closed unit interval [0, 1] in the real line) by identifying (x, 1) with f(x)for $x \in X$ and by shrinking $(x_0 \times I) \cup \{y_0\}$ to a point which we denote by