On Characterizations of Spaces with G_r-diagonals

By Takemi Mizokami

A space X is called to have a G_r-diagonal if the diagonal Δ in $X \times X$ is a G_r-set. A space X is called to have a regular G_r-diagonal if Δ is a regular G_r-set, that is, Δ is written by the following:

$$\Delta = \cap \{U_n/n \in N\} = \cap \{U_n/n \in N\},$$

where U_n's are open sets containing Δ in $X \times X$ and N denotes the set of all natural numbers. Ceder in [1] characterized a G_r-diagonal as follows:

Lemma 1. A space X has a G_r-diagonal if and only if there is a sequence $\{U_n/n \in N\}$ of open coverings of X such that for each point p in X

$$p = \cap \{S(p, U_n)/n \in N\}.$$

According to Zenor's result in [2], a regular G_r-diagonal is characterized as follows:

Lemma 2. A space X has a regular G_r-diagonal iff there is a sequence $\{U_n/n \in N\}$ of open coverings of X such that if p, q are distinct points in X, then there are an integer n and open sets U and V containing p and q, respectively, such that no member of $\{U_n\}$ intersects both U and V.

The object of the present paper is to characterize spaces with G_r- or regular G_r-diagonal by virtue of above lemmas as images of metric spaces under open mappings with some properties.

Theorem 1. A space X has a G_r-diagonal iff there is an open mapping (single-valued) f from a metric space T onto X such that

$$d(f^{-1}(p), f^{-1}(q)) > 0 \text{ for distinct points } p, q \in X.$$

Proof. Only if part: Define T as follows:

$$T = \{(\alpha_1, \alpha_2, \cdots) \in N(A)/\cap \{U^\alpha_n/n \in N\} \neq \emptyset\},$$

where $\{U^\alpha_n = \{U^\alpha_n/\alpha \in A\}/n \in N\}$ is a sequence of open coverings of X satisfying the condition in Lemma 1. If we define a mapping $f: T \to X$ as follows;

$$f(\alpha) = \cap \{U^\alpha_n/n \in N\} \text{ for } \alpha = (\alpha_1, \alpha_2, \cdots) \in T,$$

then f is clearly a single-valued mapping from T onto X. Since

$$f(N(\alpha_1, \cdots, \alpha_n)) = \cap \{U^\alpha_i/1 \leq i \leq n\},$$

it follows that f is open. Let p, q be distinct points in X; then by Lemma 1 we admit an integer n in N such that q does not belong to $S(p, U_n)$. In this case it is proved that...