132. On Sylow Subgroups and an Extension of Groups

By Zensiro Goseki Gunma University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Let A and B be groups. If there are homomorphisms f and gsuch that a sequence $\xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f}$ is exact, then we denote this collection by (A, B: f, g) and we say (A, B: f, g) to be well defined. Let (A, B: f, g) and $(C, D: f_1, g_1)$ be well defined. If C and D are subgroups of A and B, respectively, and if $f=f_1$ on C and $g=g_1$ on D, then we call $(C, D: f_1, g_1)$ a subgroup of (A, B: f, g) and in this case, we denote $(C, D: f_1, g_1)$ by (C, D: f, g). Furthermore, we call (C,D:f,g) a normal subgroup of (A,B:f,g) if $C \triangleleft A$ and $D \triangleleft B$, and a Sylow subgroup of (A, B: f, g) if C is a Sylow subgroup of A (in this case D is also a Sylow subgroup of B). We shall discuss the existence of such Sylow subgroups (C, D: f, g) of (A, B: f, g). It is easy to see that there are homomorphisms f and g such that (A, B: f, g) is well defined iff there are groups M, N and homomorphisms $\alpha_1, \alpha_2, \beta_1, \beta_2$ such that sequences $1 \to M \xrightarrow{\alpha_1} A \xrightarrow{\alpha_2} N \to 1$ and $1 \to N \xrightarrow{\beta_1} B \xrightarrow{\beta_2} M \to 1$ are exact. This shows that the results given in this note are related to an extension of groups.

Lemma 1. Let (A, B; f, g) be well defined. Let M and N be subgroups of A and B, respectively. Then (M, N; f, g) is well defined iff $f(M) = f(A) \cap N$ and $g(N) = g(B) \cap M$.

Proof. Since (A,B:f,g) is well defined, $A/g(B)\cong f(A)$ and so $M/M\cap g(B)\cong Mg(B)/g(B)\cong f(M)$. Assume that (M,N:f,g) is well defined. Then $M/g(N)\cong f(M)$. Hence $M/g(N)\cong M/M\cap g(B)$ where this isomorphism is given by $xg(N)\to x(M\cap g(B))$ for all $x\in M$. Hence $M\cap g(B)=g(N)$. Similarly $N\cap f(A)=f(M)$. Conversely, let $f(M)=N\cap f(A)$ and $g(N)=M\cap g(B)$. Then $M/g(N)=M/M\cap g(B)\cong Mg(B)/g(B)\cong f(M)$, i.e., $M/g(N)\cong f(M)$ where this isomorphism is given by $xg(N)\to f(x)$ for all $x\in M$. Similarly $N/f(M)\cong g(N)$ where this isomorphism is given by $yf(M)\to g(y)$ for all $y\in N$. Hence (M,N:f,g) is well defined.

Lemma 2. Let (A, B; f, g) be well defined and let (M, N; f, g) be a normal subgroup of (A, B; f, g). Then $(A/M, B/N; \bar{f}, \bar{g})$ is well defined, where \bar{f} and \bar{g} are homomorphisms which are naturally induced by f and g, respectively.

Proof. By Lemma 1, $f(A) \cap N = f(M)$. Hence $f^{-1}(N) = f^{-1}(f(A))$