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In this note, we shall consider the hypoellipticity of the following
operator in R?:
P(x,t, D,, 0,)=(0;+ taD;)(0,+tbD,) +cD,
+A(x, )tD,+ B(x, 1),
where 9,=0d/0t, D,=—id/ox and a, b, c e C and A(x, ), B(x, t) € C=(R?.
(Cf. Grusin [1], [2], Sjostrand [3], Treves [4].) A linear (pseudo-)
differential operator Q(x,D,) in R is called hypoelliptic in an open
subset QC R™ if
sing supp u=sing supp Qu, ue Q).
If A=0 and B=0, then we have
Theorem O (cf. [1], Theorem 1.2). Assume that Rea-Re b<0.
Then
P(x,t,D,,0,)=(0,+taD,)(0;+tbD,)+cD,
1s hypoelliptic in R if and only if
€ ez
b—a
Thus, in this note, we assume that
(A) Re a<0,Re b>0, bca e Z* U{0}.
We shall give the sufficient conditions on 4, B for P to be hypoelliptic
in a neighbourhood of (x,?)=(0,0) (see Corollary 1 and Corollary 2
below). The case that Rea>0, Re b<0, ¢/(b—a)e Z*U{0} can be
proved in exactly the same way. Now we state the main result:
Theorem 1 (cf. [3], Proposition 5.4). Under the assumption (A),
there exist properly supported operators
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with the following properties:
(i) G- P—I and P-G—1I have C> kernels.
(ii) Forall seR
G: H*(R)—H (R,



