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1. Statement of results. In this note, h* will denote either the
unoriented cobordism theory * or the usual cohomology theory with
Z.-coefficients H*(;Z2). The corresponding equivariant cohomology
theory for Z.-spaces will be denoted by h*

Let M be a manifold and a an involution on M. We define an
embedding z/: M-M2--M M by z/(x)=(x, ax). Then z/is equivariant
with respect to the involution a on M and the involution T on M which
is defined by T(Xl, x)--(x, x) Let zl hq- M-/(M) denote the
Gysin homomorphism or z/, where m----dimM. We put (a) z/ (1)
h rMZaZ2, ].

In the present note we shall give an explicit formula for O(a) and
apply it to get theorems of the Borsuk-Ulam type. Our results
generalize those of Nakaoka [3], [4]. From the formula for 8(a) we
shall also derive a sort of integrality theorem concernining the fixed
point set of a; see Theorem 4. Detailed accounts will appear else-
where.

Let S be the infinite dimensional sphere with the antipodal invo-
lution. The projection z:" S M-S M induces the Gysin homo-

Z2
morphism ,. h*(M2)-h*z(M2) and the usual homomorphism *" hz(M )
h*(M). Let d: MM be the diagonal map. Since d(M) is the
fixed point set of T, h*z(d(M)) is isomorphic to h*z.(pt) ) h*(M) and d

h*(pt)

induces d*" h*z.(MZ)h*z(pt) ) h*(M).
h*(pt)

Lemma 1. The homomorphism
z*@d*" h*z(M)h*(M)@(h*z(pt) @ h*(M))

h*(pt)

is in]ective.
We denote by S the multiplicative set {w[k>_ 1} in h*z(pt)=h*(P)

where w is the universal first Stiefel-Whitney class. I X is a Z-
space then h*z(X) is an h(pt)-module and we can consider the localized
ring S-lh(X) o h*z.(X) with respect to S Note that h* (pt) is isomor-
phic to a formal power series ring h*(pt)[[wl]] and h(pt) @ h*(M)

h*(pt)

1) In this note we work in the smooth category. All manifolds will be con-
nected, compact and without boundary unless otherwise stated.


