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Introduction. In the present paper we shall construct the funda-
mental solution E(t, s) for a parabolic pseudo-differential equation

(Lu =u +p(t; x, D)u=0 in (0, c) xR
(0.1) / It
where p(t; x,D) is a pseudo-differential operator of class E’(S,p,)
(0<p<l, -c6<1, 3<p) which satisfies the ollowing condition"

There exist positive constants C0 and R such that
(0.2) Rep(t; x,)Co(X,) or 0<t< and
where (x, ) is a basic weight unction defined in 1. We note that
2(x, ) varies even in x and may increase in polynomial order, and that
it is important to take 0 in 4.

The undamental solution E(t, s) will be constructed as a pseudo-
differential operator o class S,, with parameter t and s. The method
o construction o E(t,s) is similar to that given in Tsutsumi [10].
Then the solution of the Cauchy problem (0.1) is given by u(t)
=E(t, O)uo.

In 3 we show that if P(t) is a positive operator, then
exp (c(t--so)E(t, So)} are bounded in S,, for tto>soO, where c is a
positive constant and N is any number.

As an application of the above theorems, in 4 we construct the
undamental solution Eo(t) or a degenerate parabolic operator= 2(0.3) L0 +D + x D +P0
and apply E0(t) to construct the parametrix for P0 near x=0 in some
class of pseudo-differential operator. We note that in case l=k=m
=1 the precise symbol of the fundamental solution Eo(t) is found in
Hoel [4] and that the operator P0 has been studied by Beals [1],
HSrmander [3], Grushin [2], Kumano-go and Taniguchi [6] and
SjSstrand [9].

1. Notations and basic calculus of pseudo.differential opera-
tors of class Sap,. We say that a C-function (x, ) in RR is a
basic weight function when (x, ) satisfies conditions (cf. [6])’


