22. On an Asymptotic Property of Spectra of a Random Difference Operator

By Masatoshi FUKUSHIMA, Hideo NAGAI, and Shintaro NAKAO Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1975)

We consider a discrete version of the Schrödinger operator with a random potential q:

$$(1) \qquad (H^{\omega}u)(a) = -(H^{0}u)(a) + q(a, \omega)u(a), \qquad a \in Z^{\nu}.$$

Here u is a function on the ν -dimensional lattice space Z^{ν} , H^{0} is a second order difference operator defined by

(2)
$$(H^{0}u)(a) = \frac{\sigma^{2}}{2} \sum_{i=1}^{\nu} \{u(a_{1}, \dots, a_{i}-1, \dots, a_{\nu}) - 2u(a) + u(a_{1}, \dots, a_{i}+1, \dots, a_{\nu})\}, \quad a \in Z^{\nu},$$

with a positive constant σ and $\{q(a, \omega); a \in Z^{\nu}\}$ is a family of random variables defined on a certain probability space (Ω, \mathcal{B}, P) . The only assumption we make on random variables $\{q(a, \omega); a \in Z^{\nu}\}$ is that they form a stationary random field. Their common distribution function will be denoted by F(x):

$$F(x) = P(q(0) \leq x), \qquad x \in R^1.$$

Denote by $L^2(Z^{\nu})$ the space of all square summable functions on Z^{ν} with inner product $(u, v) = \sum_{a \in Z^{\nu}} u(a)v(a)$. Since H^0 is a bounded symmetric operator on $L^2(Z^{\nu})$, it is easy to see that the operator H^{ω} restricted to the space $C_0(Z^{\nu})$ of functions with finite supports is essentially self-adjoint and that its self-adjoint extension A^{ω} can be described as follows:

(4)
$$\begin{cases} \mathcal{D}(A^{\omega}) = \{ u \in L^{2}(Z^{\nu}) ; H^{\omega}u \in L^{2}(Z^{\nu}) \} \\ A^{\omega}u = H^{\omega}u \qquad u \in \mathcal{D}(A^{\omega}). \end{cases}$$

Let $\{E_{\lambda}^{w}; \lambda \in R^{1}\}$ be the resolution of the identity associated with $A^{w}: A^{w} = \int_{-\infty}^{\infty} \lambda dE_{\lambda}^{w}.$

It turns out that $(E_{\lambda}^{\omega}I_0, I_0)$ is measurable in $\omega \in \Omega$ where $I_0(\alpha) = \delta_0(\alpha)$ $\alpha \in Z^{\nu}$. So we can define

$$(5) \qquad \qquad \rho(\lambda) = \langle (E_{\lambda}I_0, I_0) \rangle$$

where $\langle \rangle$ is the expectation with respect to the probability measure P. ρ is called the spectral distribution function of the ensemble of operators $\{H^{\alpha}; \omega \in \Omega\}$. Our present aim is to show that ρ and the distribution function F of q(0) have the same tails asymptotically in the following sense.