81. A Note on Isolated Singularity. II

By Isao Naruki

Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 3, 1975)

0. Introduction. This is a brief résumé of the second half of the study whose first part has already been announced [3]. The main purpose is to investigate the structure of an isolated singularity when it admits a C^* -action, especially, to obtain some formula concerning the characters of the representations of C^* over various cohomology groups associated with the singularity.

1. Basic concepts. A C^* -action over an isolated singularity (X, x) is a family $T(c), c \in C^*$ of analytic homeomorphisms of X onto itself satisfying that T(c)x = x, $T(cc') = T(c)T(c')(c, c' \in C^*)$, and that $T: X \times C \ni (x, c) \rightarrow T(z)c \in X$ is analytic. Throughout this note we assume that the constants are the only invariant elements of $\Omega^0_{X,x}$ under this action. Let ξ be the generating vector field of this action. The interior multiplication $i(\xi)$ is an anti-derivation of Ω^{\cdot}_X regarded as the sheaf of graded algebra. It is well known that the Poincaré complex Ω^{\cdot}_X is acyclic in this case. However we have some more

Lemma 1. Under the above condition the sequences

$$\cdots \xrightarrow{d} \mathcal{H}^{0}_{x}(\Omega^{p}_{X}) \xrightarrow{d} \mathcal{H}^{0}_{x}(\Omega^{p+1}_{X}) \xrightarrow{d} \cdots$$
$$\cdots \xrightarrow{Q^{p}_{X}} \Omega^{p-1}_{X} \xrightarrow{i(\xi)} \Omega^{p-1}_{X} \xrightarrow{i(\xi)} \Omega^{0}_{X} \xrightarrow{\alpha} (\iota_{x})_{*}C \longrightarrow 0$$

are exact, where ι_x denotes the inclusion $x \longrightarrow X$ and α the average map $\Omega^0_{X,x} \ni f \longrightarrow \int_0^1 T(e^{2\pi i\theta})^* f d\theta \in (\iota_x)_* C_x.$

If we set $\Omega_{\xi}^{p} = i(\xi)\Omega_{X}^{p+1}$, then we have the short exact sequences $0 \rightarrow \Omega_{\xi}^{p} \rightarrow \Omega_{X}^{p-1} \rightarrow 0$. From these we obtain the following Gysin type sequences

$$0 \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p}_{\xi}) \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p}_{X}) \longrightarrow \mathcal{H}^{0}_{x}(\Omega^{p-1}_{\xi}) \longrightarrow \cdots$$
$$\cdots \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p}_{\xi}) \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p}_{X}) \longrightarrow \mathcal{H}^{q}_{x}(\Omega^{p-1}_{\xi}) \longrightarrow \cdots$$

Using these, we can prove

Theorem 1. Let the notation and the assumption be as above. Assume that (X, x) satisfies the condition (L). Then $\mathcal{H}_x^q(\Omega_{\xi}^p) = 0$ for (p, q) such that $p+q \neq \dim X$, $q \neq p+1$, $q < \dim X$, and there are natural isomorphisms $\mathcal{H}_x^q(\Omega_X^p) \simeq \mathcal{H}_x^q(\Omega_X^{p+1})$ for (p, q) such that $p+q = \dim X$, $0 < q < \dim X$.

Remark. If $\dim X$ is even, the proof requires some technique from Kähler geometry, though we can avoid the use of this in case