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Throughout this paper, by a space we shall mean a completely re-
gular T-space. According to Morita [14], [15], a space S is a countably-
compactificatio (----c--cf) of a given space X if

a) S is countably compact (--cc) and contains X as a dense subset,
and

b) every cc closed subset of X is closed also in S. In case X
admits a c-cf, X is said to be countably-compactifiable. Since X is
countably-compactifiable if and only if X has a c--cf S with X S fiX
([14], Proposition 3.4), in the sequel we will consider only a c-cf S of
X as a subspace S of fiX with the exception of 3. Interesting results
concerning countably-compactifiability have been obtained by Morita.
For example, an M-space X is countably-compactifiable if and only if
X is homeomorphic to a closed subset of a product space of a countably
compact space and a metric space [14], [15]. In [10] we introduced a
notion of closed c-cf and investigated some properties and characteri-
zations of spaces with the closed c--cf. Let S be a c--cf of X and
X*--flX-X and S*--S ( X*. S* is called the X*-section of S. In case
S* is closed in X*, we say that S is the closed c--cf of X. In Theorem
3.5 [10] it is proved that if X admits a closed c--cf, then it is uniquely
determined.

Concerning relations between countably-compactifiability of given
spaces and maps, it is natural to ask whether countably-compactifiability
of X (resp. Y) implies one of Y (resp. X)where Y is a quasi-perfect
image of X. For this problem, the following results have been obtained.

Theorem A (Morita [14], Proposition 4.2). Let f be a perfect
map from X onto Y. If Y is countably-compactifiable, then so is X.

Theorem B (Hoshina [2]). Let f be a quasi-perfect map from X
onto Y and X admits a c-cf Then we have

1) if either Y is normal or an M-space, then Y admits a c-cf
2) if f is open, then Y admits a c-cf
Theorem A implies that if f is a perfect map from X onto Y with

a c--cf T, then S=(flf)-IT=XJS* is a c-cf o X and fs=f[S is
obviously a perfect map from S onto T where S*=(flf)-T* and flf is
the Stone extension of f. But as shown by Example 3.1, S is not


