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1. Introduction. In this note we show that the Marcinkiewicz
interpolation theorem of operators can be extended in the martingale
setting.

2. Definition. Let (/2, E, P, {}=) a probability space furnished
with a non-decreasing sequence of a-algebras of measurable subsets
,c... c,c,+,c.., c=V=.

We define the set of rdom vribles H=H(,,P, {}=)
e L(9);[][fl[]= (f*)dP < where f*(w)= sup

and pl.
Note that H L, and that H L’ for 1 <p<. In fact, there

exists a constant A such that ][f[[a[f[[A [[f[[. Furthermore,
as is well-known, the norm llIf[]] Xs equivalent to
where f=f--f_, f0=0 ([1]-[3]).

3. Weak type result. Let T be an operator rom H to the set
of random variables defined on a a-finite measure space (9, , P).

Theorem. Suppose that
(1) T is quasi-linear, i.e. IT(f+g)lC(lTfl+Tg])
(2) ((w; ]Tf(w)]>t))/’M/t ]]]f]]],, for all t>O, where
q (i=0, 1), P0#P and qo#qx. Let usput 1/p=(1-8)/po+8/p and
1/q=(1-8)/qo+8/qx, 0<<1. Then

1-Tf] AC(C+ 1)M0 M f],
where

A 0((q-- q)-X + (q q0)-(p- 1)-).
Proof. We consider the case l=p0p and qoq only, the other

cases are treated similarly.

1.st step. The following decomposition lemm is used in the proof,
which corresponds to the CalderSn-Zygmund decomposition ([4]-[6]).

Lemma (R. Gundy). Let e L(9), rl. Then for each aO,
is decomposed into three random variables g, h, , v g + h+ , which
satisfy

( 2 ) . Ah= K v 111, h I1 g v I1


