50. **On an Explicit Formula for Class-1 "Whittaker Functions" on GL_n over \(p \)-adic Fields**

By Takuro SHINTANI

(Comm. by Kunihiko KODAIRA, M. J. A., April 12, 1976)

"Whittaker functions" on \(p \)-adic linear groups have been studied by several authors (see e.g. [2] and [3]). In this note, we present an explicit formula for the class-1 "Whittaker functions" on \(GL_n(k) \), where \(k \) is a non archimedean local field.

1. Let \(k \) be a finite extension of the \(p \)-adic field \(\mathbb{Q}_p \) and let \(\mathcal{O} \) be the ring of integers of \(k \). Choose a generator \(\pi \) of the maximal ideal of \(\mathcal{O} \) and denote by \(q \) the cardinality of the residue class field of \(k \). Set \(G=GL_n(k) \) and \(K=GL_n(\mathcal{O}) \). Then \(K \) is a maximal compact open subgroup of \(G \). The invariant measure of \(G \) is normalized so that the total volume of \(K \) is equal to 1. Denote by \(L_0(G,K) \) the space of complex valued compactly-supported bi-\(K \)-invariant functions on \(G \). Then \(L_0(G,K) \) is a commutative subalgebra of the group ring \(L(G) \) of \(G \).

We denote by \(N \) the group of \(n \times n \) upper triangular unipotent matrices with entries in \(k \). Choose a character \(\psi \) of the additive group of \(k \) which is trivial on \(\mathcal{O} \) but not trivial on \(\pi^{-1}(\mathcal{O}) \). Denote by the same letter \(\psi \) the character of \(N \) given by \(\psi(x)=\prod_{i=1}^{n-1} \psi(x_{i,i+1}) \), where \(x_{i,i+1} \) is the \((i,i+1)\) entry of \(x \).

For each algebra homomorphism \(\lambda \) of \(L_0(G,K) \) into \(\mathbb{C} \), it is known that there uniquely exists a function \(W_\lambda(g) \) on \(G \) which satisfies the following conditions (1), (2) and (3).

1. \(W_\lambda(xg)=\psi(x)W_\lambda(g) \) \((\forall x \in N) \),
2. \(\int_G W_\lambda(gx)\varphi(x)dx=\lambda(\varphi)W_\lambda(g) \) \((\forall \varphi \in L_0(G,K)) \),
3. \(W_\lambda(1)=1 \).

The function \(W_\lambda \) is said to be the class-1 "Whittaker function" on \(G \) associated with the homomorphism \(\lambda \) of \(L_0(G,K) \) into \(\mathbb{C} \).

For each \(n \)-tuple \(f=(f_1,f_2,\ldots,f_n) \) of integers, we denote by \(\pi^f \) the diagonal matrix whose \(i \)-th diagonal entry is \(\pi^{f_i} \) \((i=1,\ldots,n) \). Set \(w_\lambda(f)=W_\lambda(\pi^f) \). It is known that \(G=\bigsqcup_{f \in \mathbb{Z}^n} N\pi^f K \) (disjoint union). To evaluate \(W_\lambda \) on \(G \), it is sufficient to know \(w_\lambda(f) \) for all \(f \in \mathbb{Z}^n \), since \(W_\lambda \) is right \(K \)-invariant and satisfies (1). Since the conductor of \(\psi \) is \(\mathcal{O} \), it follows easily from (1) that \(w_\lambda(f) \) is zero unless \(f_1 \geq f_2 \geq \cdots \geq f_n \).

For \(i=1,2,\ldots,n \), let \(\varphi_i \) be the characteristic function of the double...