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1. Recently several authors have considered generalizations into
various directions of Bombieri’s prime number theorem [2]. Here we
give an induction principle through which most of former results follow
in improved forms and also with which we can expand considerably
the domain of the equi-distributed sequences (for this terminology see
[1]).

Let f be a complex valued arithmetic function, and let introduce
the following properties. (/): f(n)= O(r(n)C), where r(n) is the divisor
function. (_): If the conductor of a non-principal character X is
0 ((log x)), then we have . f(n)x(n) O(x (log x)-). Further we

consider the equi-distribution property
(C): max max IE(y; q, l; f)l=O(x (log x)-),

q_x/" (log x)-B yx (q,1) =1

where
E(y q, l; f)= , f(n)-?(q) -1 f(n),

n-=- (rood q) (n,q) =1
n<y ny

?(q) being the Euler function. In the above it is understood that C is
a fixed constant and A, B--B(A), D can be taken arbitrarily large and
that these are all depending only on f. Then we have

Theorem 1. Let f and g have the properties (), (.), (C).
the multiplicative convolution f.g does so.

Then

2. As for the proof of Theorem 1 we remark the following
equality" If y_<_ x and (q, 1)- 1, then

E(y q, l; f.g)-- f(u)E(y/u; q, l; g)
K

(u,q) =1
(log x) _u-<:x (log X)--K’

+ , f(u)E(y/u; q, l; g)
(u,q) =1
u(log x)K

+ Z g(v){E(y/v; q, Iv; f)
(v,q)=l

v’g (log x)K’

--E (min (y/v, x (log x)-) q, l f)}
say,

where ua--1, vv=_l (mod q) and K,K’ are to be taken appropriately.


