95. Solution of R. Telgársky's Problem*

By Yukinobu YAJIMA
Department of Mathematics, University of Tsukuba
(Communicated by Kenjiro Shoda, M. J. A., Sept. 13, 1976)

1. Introduction. In [4], R. Telgársky showed that a paracompact space X has a closure-preserving cover by compact sets if X has two order locally finite covers $\{U_{\alpha}: \alpha \in A\}$ and $\{C_{\alpha}: \alpha \in A\}$ such that C_{α} is compact and U_{α} is an open neighborhood of C_{α} for each $\alpha \in A$. Order locally finite covers were introduced by Y. Katuta [2]. In the same paper [4], R. Telgársky showed that a paracompact space with two order locally finite covers which are described above is totally paracompact and that a paracompact space with a closure-preserving cover by finite sets is totally paracompact. In these connections, he raised the question of whether or not a paracompact space with a closure-preserving cover by compact sets is totally paracompact ([4] Problem 2). In the present paper, we shall give an affirmative answer to this problem.

All spaces are assumed to be Hausdorff spaces. N denotes the set of all natural numbers.

A space X is said to be *totally paracompact* [1] if each open basis of X contains a locally finite cover of X. A family \mathfrak{F} of subsets of X is said to be σ -closure-preserving if \mathfrak{F} is the countable union of families $\{\mathfrak{F}_n\}_{n=1}^{\infty}$ such that \mathfrak{F}_n is closure-preserving for each $n \in N$.

Theorem 1. If X is a paracompact space with a σ -closure-preserving cover by compact sets, then X is totally paracompact.

Corollary 2. If X is a paracompact space with a closure-preserving cover by compact sets, then X is totally paracompact.

Corollary 2 is an immediate consequence of Theorem 1.

2. Proof of Theorem 1. When $\mathfrak U$ is a family of subsets of a space X, let $\mathfrak U^*=\cup\{U\colon U\in\mathfrak U\}$. Let $\mathfrak F$ be a closure-preserving family consisting of compact sets of a space X. For each $x\in X$, K(x) is defined to be $X-\cup\{F\in\mathfrak F\colon x\not\in F\}$.

When A is a closed subset of X, let

 $M_{\mathfrak{F}}(A) = \{x : x \in \mathfrak{F}^* \cap A, K(x) \text{ is not properly contained in any } K(x') \text{ for } x' \in A\}.$

We need two lemmas to prove Theorem 1.

Lemma 3 (Potoczny [3]). Let A be a closed subset of a space X

^{*)} Dedicated to Professor Kiiti Morita for his 60th birthday.