136. The Concrete Description of the Colocalization

By Masahisa SATO

Department of Mathematics, Tokyo University of Education

(Communicated by Kenjiro SHODA, M. J. A., Nov. 12, 1976)

Introduction. Recently K. Ohtake [5] proved that for a torsion theory $(\mathcal{T}, \mathcal{F})$ there is a colocalization functor if and only if \mathcal{F} is a TTFclass, in this case we have another torsion theory $(\mathcal{F}, \mathcal{D})$ and T. Kato [2], K. Ohtake [5] proved that there is an equivalence between the colocalization subcategory [C] of Mod-R with respect to $(\mathcal{T}, \mathcal{F})$ and the localization subcategory [L] of Mod-R with respect to $(\mathcal{F}, \mathcal{D})$.

In this paper, we shall show a colocalization of any module M_R can be obtained by $M \otimes_R I \otimes_R I$ concretely where I is a corresponding two sided ideal, i.e. the unique minimal ideal belonging to the filter which corresponds to $(\mathcal{F}, \mathcal{D})$.

As an application of this, we get self-contained and fairly simple proofs of the results in [5].

The concrete description of the colocalization. Throughout this paper, ring R means an associative ring with unit, Mod-R (resp. R-Mod) denotes a class of all unital right (resp. left) R-modules and $(\mathcal{A}, \mathcal{B})$ (resp. $(\mathcal{A}^*, \mathcal{B}^*)$) denotes a torsion theory in Mod-R (resp. R-Mod), about which the reader is referred to [6].

Let $(\mathcal{A}, \mathcal{B})$ be a torsion theory. A module M_R is called "divisible" if $Ext_R^1(K, M) = 0$ for any $K \in \mathcal{A}$, dually "codivisible" if $Ext_R^1(M, K) = 0$ for any $K \in \mathcal{B}$, and a map $M_R \xrightarrow{f} L(M)_R$ (resp. $C(M)_R \xrightarrow{f} M_R$) is called "localization" of M_R (resp. "colocalization" of M_R) if ker (f), cok $(f) \in \mathcal{A}$, $L(M)_R \in \mathcal{B}$ and L(M) is divisible (resp. ker $(f) \in \mathcal{B}$, cok $(f) \in \mathcal{B}, C(M)$ $\in \mathcal{A}$ and C(M) is codivisible).

[L], [C] denote the full subcategory of torsion-free divisible modules in Mod-R and torsion codivisible modules in Mod-R which are called localization subcategory and colocalization subcategory with respect to $(\mathcal{A}, \mathcal{B})$ respectively.

Let I be a two sided idempotent ideal and $\mathcal{F}=\{M_R \in \text{Mod-}R \mid M \cdot I = 0\}$, then \mathcal{F} is TTF-class in the sense of Jans [1]. (i.e. closed under taking submodules, extensions and direct products). Any TTF-class in Mod-R is obtained as above, in this case corresponding torsion class and torsion-free class are $\mathcal{T}=\{M_R \mid M \cdot I = M\}$ and $\mathcal{D}=\{M_R \mid \text{Ann}_M(I)=0\}$ respectively. (i.e. $(\mathcal{T}, \mathcal{F}), (\mathcal{F}, \mathcal{D})$ are torsion theories.) The corresponding filter with respect to $(\mathcal{F}, \mathcal{D})$ is $\mathcal{J}=\{J_R \mid J_R$ is a right ideal which