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Introduction. Recently K. Ohtake [5] proved that for a torsion
theory (4, &) there is a colocalization functor if and only if & is a TTF-
class, in this case we have another torsion theory (¥, 9) and T. Kato
[2], K. Ohtake [5] proved that there is an equivalence between the
colocalization subcategory [C] of Mod-R with respect to (<, <F) and the
localization subcategory [L] of Mod-R with respect to (&, D).

In this paper, we shall show a colocalization of any module My
can be obtained by M®Q:zI®rI concretely where I is a corresponding
two sided ideal, i.e. the unique minimal ideal belonging to the filter
which corresponds to (¥, D).

As an application of this, we get self-contained and fairly simple
proofs of the results in [5].

The concrete description of the colocalization. Throughout this
paper, ring B means an associative ring with unit, Mod-R (resp. R-
Mod) denotes a class of all unital right (resp. left) R-modules and (.1,
B) (resp. (A*, $*)) denotes a torsion theory in Mod-R (resp. R-Mod),
about which the reader is referred to [6].

Let (A, B) be a torsion theory. A module M is called “divisible”
if ExtL (K, M)=0 for any K € i, dually “codivisible’ if Ext}, (M, K)=0

for any K ¢ B, and a map M R-—’i—>L(M) r (resp. C(M) R—f—>M ) 1s called
“localization’” of M (resp. “colocalization” of Mz) if ker (f), cok (f) € A,
L(M), e b and L(M) is divisible (resp. ker (f) e B, cok (f) e B, C(M)
e J and C(M) is codivisible).

[L], [C] denote the full subcategory of torsion-free divisible modu-
les in Mod-R and torsion codivisible modules in Mod-R which are called
localization subcategory and colocalization subcategory with respect to
(A, B) respectively.

Let I be a two sided idempotent ideal and F={My ¢ Mod-R|M .1
=0}, then & is TTF-class in the sense of Jans [1]. (i.e. closed under
taking submodules, extensions and direct products). Any TTF-class
in Mod-R is obtained as above, in this case corresponding torsion class
and torsion-free class are I={Mz|M-I=M} and D={Mp|Ann,(I)=0}
respectively. (i.e. (T,5), (F, D) are torsion theories.) The corre-
sponding filter with respect to (F, 9) is J={Jz|J is a right ideal which



