146. On Algebraic Threefolds of Parabolic Type

By Kenji UENO

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, Japan

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 13, 1976)

§ 1. In the present note all algebraic varieties are assumed to be complete, irreducible and defined over the complex number field C. A non-singular algebraic variety is called an algebraic manifold.

Let V be an algebraic manifold and we let K_{v} (resp. Ω_{v}^{p}) denote the canonical bundle (resp. the sheaf of germs of holomorphic *p*-forms) of V. Put

$P_m(V) = \dim_{\mathcal{C}} H^0(V, \mathcal{O}(mK_V)),$	$m = 1, 2, 3, \cdots$
$h^{p,0}(V) = \dim_{\mathcal{C}} H^0(V, \Omega^p_V),$	$p = 1, 2, 3, \dots, \dim V.$

It is well-known that these are birational invariants. Further we put

$$p_{q}(V) = P_{1}(V),$$

 $q(V) = h^{1,0}(V).$

 $p_q(V)$ (resp. q(V)) is called the geometric genus (resp. the irregularity) of V. For a singular algebraic variety V we define

$$p_g(V) = p_g(V^*),$$

 $q(V) = q(V^*),$

where V^* is a non-singular model of V.

If $P_m(V)$ is positive for a natural number *m*, we define a rational mapping (the *m*-th canonical mapping)

where $\{\varphi_0, \varphi_1, \dots, \varphi_N\}$ is a basis of $H^0(V, \mathcal{O}(mK_V))$. We set $N(V) = \{m \ge 0 | P_m(V) \ge 0\}$. The Kodaira dimension $\kappa(V)$ of an algebraic manifold V is defined by

$$\kappa(V) = \begin{cases} \max_{m \in N(V)} \dim \Phi_{mK}(V) & \text{if } N(V) \neq \emptyset, \\ -\infty & \text{if } N(V) = \emptyset. \end{cases}$$

The Kodaira dimension $\kappa(V)$ is a birational invariant. Therefore, for a singular algebraic variety V we define

$$\kappa(V) = \kappa(V^*),$$

where V^* is a non-singular model of V.

An algebraic manifold V is called *parabolic type* if $\kappa(V)=0$. This is equivalent to saying that $P_m(V) \leq 1$ for every positive integer m and there exists a positive integer n such that $P_n(V)=1$.