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1. In the present note all algebraic varieties are assumed to be
complete, irreducible and defined over the complex number field C. A
non-singular algebraic variety is called an algebraic manifold.

Let V be an algebraic manifold and we let Kv (resp. 2) denote
the canonical bundle (resp. the sheaf of germs of holomorphic p-forms)
of V. Put

P(V)-- dime H(V, O(mKv)), m--l, 2, 3, ...,
h,(V)--- dime H(V, 9), p=l, 2, 3, ..., dim V.

It is well-known that these are birational invariants. Further we put
(V)=P,(V),
q(V)=hl,(V).

p,(V) (resp. q(V)) is called the geometric genus (resp. the irregularity)
of V. For a singular algebraic variety V we define

(V)=p(V*),
q(V)=q(V*),

where V* is a non-singular model of V.
If P(V) is positive for a natural number m, we define a rational

mapping (the m-th canonical mapping). V:

z: (o(Z)’(z)" ..." (z))
where (Oo,O,...,ou} is a basis of H(V,O(mK)). We set N(V)
(mOIP(V)0). The Kodaira dimension ,(V) o an algebraic

manifold V is defined by
max O(V) ,

(V)=/,,)
dim if N(V)

i N(V)=0.
The Kodaira dimension (V) is a birational invariant. Therefore, for
a singular algebraic variety V we define

(V)=(V*),
where V* is a non-singular model of V.

An algebraic manifold V is called parabolic type if (V)-----O. This
is equivalent to saying that P(V)_I for every positive integer m and
there exists a positive integer n such that P,(V)=I.


