4. On Discontinuous Groups Acting on a Real Hyperbolic Space. II

By Takeshi MOROKUMA

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1977)

 0° . Let $G^{(n)}$ be the motion group of a real *n*-dimensional hyperbolic space H. In 1° we apply the two theorems in the preceding note [1] to give explicit fundamental domains and fundamental relations for arithmetic discrete subgroups of $G^{(n)}$ where $4 \leq n \leq 9$. In 2° we show some examples of discrete subgroups by giving fundamental domains in case n=3.

1°. We define an arithmetic group Γ of $G^{(n)}$. Let H be the upper half space $\{\xi = {}^{t}(\xi_{1}, \dots, \xi_{n}) \in \mathbb{R}^{n} | \xi_{n} \ge 0\}$ of \mathbb{R}^{n} with metric form $ds^{2} = \left(\sum_{j=1}^{n} d\xi_{j}^{2}\right)/\xi_{n}^{2}$. Let Q be the matrix of degree (n+1)

$$\begin{pmatrix} \mathbf{1}_{n-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} \end{pmatrix}$$

where 1_{n-1} means the unit matrix of degree n-1. Let X_Q be a connected component of the hypersurface $\{x = {}^{t}(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | {}^{t}x.Q.x = -1\}$ of \mathbb{R}^{n+1} . Then the motion group $G^{(n)}$ is the subgroup

$$g \in GL(n+1, R) | {}^{t}g.Q.g = Q, g(X_{Q}) = X_{Q} \}$$

of GL(n+1, R). Its action on $H=H^n$ is given by $g.\xi=\eta$ for

$$g = \begin{bmatrix} \sigma & \gamma_1 & \gamma_2 \\ {}^t \delta_1 & \alpha_1 & \alpha_2 \\ {}^t \delta_2 & \alpha_3 & \alpha_4 \end{bmatrix} \in G^{(n)}$$

 $\sigma \in M(n-1, \mathbf{R}), \ \gamma_i, \ \delta_i \in \mathbf{R}^{n-1} \ (i=1 \text{ or } 2), \ \alpha_i \in \mathbf{R} \ (1 \leq i \leq 4), \ {}^t\xi = ({}^t\xi', \xi_n), \ \xi' \in \mathbf{R}^{n-1} \text{ where } \eta \text{ is defined by } {}^t\eta = ({}^t\eta', \eta_n), \ \eta' \in \mathbf{R}^{n-1}, \ \eta' = \left({}^t\delta_2\xi' + \frac{1}{2}({}^t\xi\xi)\alpha_3\right)$

$$+\alpha_4\Big)^{-1}\Big(\sigma\xi'+\frac{1}{2}(\xi\xi)\gamma_1+\gamma_2\Big) \text{ and } \eta_n=\Big(\delta_2\xi'+\frac{1}{2}(\xi\xi)\alpha_3+\alpha_4\Big)^{-1}\xi_n. \text{ We de-}$$

note by $\Gamma^{(n)}$ the group $G^{(n)} \cap SL(n+1, \mathbb{Z})$. From now on we assume that $4 \leq n \leq 9$. We construct a fundamental domain F fit for $\Gamma^{(n)}$. We denote by Γ^{∞} the subgroup of $\Gamma = \Gamma^{(n)}$ fixing the point at infinity considered to be contained in ∂H and by \varDelta the set $\{\xi = {}^{t}(\xi_{1}, \dots, \xi_{n}) \in H | \xi_{1} + \xi_{2} < 1, \xi_{1} > \xi_{3}, \xi_{2} > \xi_{3}, \xi_{3} > \xi_{4} > \dots > \xi_{n-1} > 0\}$. Then \varDelta is a fundamental domain for Γ^{∞} , namely $\bigcup_{g \in \Gamma^{\infty}} g \overline{\varDelta} = H$ and $g \varDelta \cap \varDelta = \phi$ for any $g \in \Gamma^{\infty} - \{e\}$ where e means the unit element of $G^{(n)}$. For each $g \in \Gamma - \Gamma^{\infty}$ we denote

No. 1]