4. On Discontinuous Groups Acting on a Real Hyperbolic Space. II

By Takeshi Morokuma
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1977)

\mathbf{o}°. Let $G^{(n)}$ be the motion group of a real n-dimensional hyperbolic space \boldsymbol{H}. In 1° we apply the two theorems in the preceding note [1] to give explicit fundamental domains and fundamental relations for arithmetic discrete subgroups of $G^{(n)}$ where $4 \leqq n \leqq 9$. In 2° we show some examples of discrete subgroups by giving fundamental domains in case $n=3$.
$\mathbf{1}^{\circ}$. We define an arithmetic group Γ of $G^{(n)}$. Let \boldsymbol{H} be the upper half space $\left\{\xi={ }^{t}\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n} \mid \xi_{n} \geqq 0\right\}$ of \boldsymbol{R}^{n} with metric form $d s^{2}$ $=\left(\sum_{j=1}^{n} d \xi_{j}^{2}\right) / \xi_{n}^{2} . \quad$ Let Q be the matrix of degree $(n+1)$

$$
\left(\begin{array}{crr}
1_{n-1} & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

where 1_{n-1} means the unit matrix of degree $n-1$. Let X_{Q} be a connected component of the hypersurface $\left\{x=\left.{ }^{t}\left(x_{1}, \cdots, x_{n+1}\right) \in \boldsymbol{R}^{n+1}\right|^{t} x . Q . x\right.$ $=-1\}$ of R^{n+1}. Then the motion group $G^{(n)}$ is the subgroup

$$
\left\{\left.g \in G L(n+1, R)\right|^{t} g \cdot Q \cdot g=Q, g\left(X_{Q}\right)=X_{Q}\right\}
$$

of $G L(n+1, \boldsymbol{R})$. Its action on $\boldsymbol{H}=\boldsymbol{H}^{n}$ is given by $g \cdot \xi=\eta$ for

$$
g=\left[\begin{array}{ccc}
\sigma & \gamma_{1} & \gamma_{2} \\
t \delta_{1} & \alpha_{1} & \alpha_{2} \\
t \delta_{2} & \alpha_{3} & \alpha_{4}
\end{array}\right] \in G^{(n)},
$$

$\sigma \in M(n-1, R), \gamma_{i}, \delta_{i} \in \boldsymbol{R}^{n-1}(i=1$ or 2$), \alpha_{i} \in \boldsymbol{R}(1 \leqq i \leqq 4),{ }^{t} \xi=\left({ }^{t} \xi^{\prime}, \xi_{n}\right), \xi^{\prime}$ $\in \boldsymbol{R}^{n-1}$ where η is defined by ${ }^{t} \eta=\left({ }^{t} \eta^{\prime}, \eta_{n}\right), \eta^{\prime} \in \boldsymbol{R}^{n-1}, \eta^{\prime}=\left({ }^{t} \delta_{2} \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \alpha_{3}\right.$ $\left.+\alpha_{4}\right)^{-1}\left(\sigma \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \gamma_{1}+\gamma_{2}\right)$ and $\eta_{n}=\left({ }_{0} \delta_{2} \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \alpha_{3}+\alpha_{4}\right)^{-1} \xi_{n}$. We denote by $\Gamma^{(n)}$ the group $G^{(n)} \cap S L(n+1, Z)$. From now on we assume that $4 \leqq n \leqq 9$. We construct a fundamental domain F fit for $\Gamma^{(n)}$. We denote by Γ^{∞} the subgroup of $\Gamma=\Gamma^{(n)}$ fixing the point at infinity considered to be contained in $\partial \boldsymbol{H}$ and by Δ the set $\left\{\xi={ }^{t}\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{H} \mid \xi_{1}\right.$ $\left.+\xi_{2}<1, \xi_{1}>\xi_{3}, \xi_{2}>\xi_{3}, \xi_{3}>\xi_{4}>\ldots>\xi_{n-1}>0\right\}$. Then Δ is a fundamental domain for Γ^{∞}, namely $\bigcup_{g \in \Gamma^{\infty}} g \bar{\Delta}=\boldsymbol{H}$ and $g \Delta \cap \Delta=\phi$ for any $g \in \Gamma^{\infty}-\{e\}$ where e means the unit element of $G^{(n)}$. For each $g \in \Gamma-\Gamma^{\infty}$ we denote

