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1. Introduction. We shall consider the Cauchy problem for a
system of partial differential equations for a system of unknown func-
tions u--u(t, x) (--1, ..., k) of two independent real variables $ and
x:

3tu,==P,(3)u (/= 1, ..., k),
where P,() are polynomials in with constant complex coefficients.
Using vector-matrix notations we can write for the above system of
equations as
( 1 ) u P()u,

p ( 1,...where ut--(u,, l $1,... k) and P()--( , )....:).
Let be a Iinear space of (generalized) complex vector valued

functions on R such that 3c c3’,x) where the topology o the space
on the left side of c is finer than that of the space on the right side of
C.

The Cauchy problem for the equation (1) is said to be forward -well posed on the interval [0, r] (r0), if and only if the following
two conditions are satisfied.

1) (Unique existence of the solution) For any uo e there exists
a unique -valued solution u*=u(t, x) of (1) for t e [0, r] with the initial
condition u*(0, x)=uo(x).

2) (Continuity of solution with respect to the initial value) If the
initial value u0 tends to zero in , then the solution ut=u*(t, x) o (1)
with the initial value u(0, x)=Uo(X) also tends to zero in uniformly
for t e [0, ].

Since the operator P(3) does not depend on the time variable t,
we can easily see that the forward -well posedness does not depend
on r>0, hence we can simply use the forward -well posedness with-
out mentioning the interval [0, r].

Making use of the Fourier transform with respect to the space
variable x

1) u’ e3 (3’) means that up e3 (3’) for every /=1, ..., k, where 3 denotes
the set of all rapidly decreasing C functions on R and 3’ means the dual space
of 3.


