36. On the Existence of Invariant Functions for Markov Representations of Amenable Semigroups

By Kôkichi SAKAI

College of Liberal Arts, Kagoshima University

(Communicated by Kôsaku YOSIDA, M. J. A., March 12, 1977)

§ 0. Introduction. Let (X, Σ, m) be a σ -finite measure space and S be a left amenable semigroup. By L^1 and L^{∞} we denote the usual Banach spaces $L^1(X, \Sigma, m)$ and $L^{\infty}(X, \Sigma, m)$ respectively. Let $T = \{T_s : s \in S\}$ be a representation of S by positive linear contractions on L^1 . For the sake of brevity such T is called a *Markov representation* of S on L^1 . By co(T) we denote the convex hull of $\{T_s : s \in S\}$ and by $\overline{co}(T)$ the closure of co(T) with respect to the operator norm topology. For this T we consider the following conditions:

(A) There exists a strictly positive function f in L^1 such that $T_s f$ = f for all $s \in S$.

(B) Every operator in $\overline{co}(T)$ is conservative.

(C) T_s is conservative for every $s \in S$.

Then it is obvious that the condition (A) implies (B) and (C). In this paper we shall prove the next theorems.

Theorem 1. For any Markov representation $T = \{T_s; s \in S\}$ of a left amenable semigroup S on L^1 , the conditions (A) and (B) are mutually equivalent.

Theorem 2. Let S be an extremely left amenable semigroup. Then for any Markov representation $T = \{T_s; s \in S\}$ of S on L^1 with the following property:

(1) $T_s^*(gh) = T_s^*(g)T_s^*(h)$ for any $g, h \in L^{\infty}$ and $s \in S$, the conditions (A) and (C) are mutually equivalent.

Theorem 1 is proved by Brunel [1] for the case when S is the additive semigroup of positive integers, and by Horowitz [3] for the case when S is commutative. In the author's paper [4] we shall show that the main theorem in [3] is also valid for the case of left amenable semigroups of Markov operators.

§ 1. Proof of Theorem 1. Let S and $T = \{T_s; s \in S\}$ be as in Theorem 1. By L(T) we denote the closed linear subspace of L^{∞} generated by $\{T_s^*h - h; s \in S, h \in L^{\infty}\}$ and put $L^+(T) = \{h \in L(T); h \ge 0\}$. Then the next lemma is well-known (e.g., see Granirer [2, Theorem 5]).

Lemma 3. For any $f \in L^{\infty}$ the following equality holds: (2) $\inf \{ \|f - h\|_{\infty} ; h \in L(T) \} = \inf \{ \|Q^*f\|_{\infty} ; Q \in co(T) \}.$ Especially if S is extremely left amenable, then