34. **On the Periods of Enriques Surfaces. I**

By Eiji Horikawa

University of Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., March 12, 1977)

§ 1. Introduction. A non-singular algebraic surface S is called an Enriques surface if the following two conditions are satisfied:

(i) The geometric genus and the irregularity both vanish.

(ii) If K is a canonical divisor on S, $2K$ is linearly equivalent to 0.

Historically speaking Enriques surfaces were the first example of non-rational algebraic surfaces which satisfy the above condition (i). In this paper we are mainly interested in Enriques surfaces over the field of complex numbers C.

From the condition (ii), it follows that there exists a two-sheeted unramified covering $\pi: T \to S$ such that T is a $K3$ surface. Since every $K3$ surface is known to be simply-connected by Kodaira [6], T is the universal covering of S. We take a holomorphic 2-form ψ on T which is non-zero everywhere, and consider the integrals

$$\int_{\gamma} \psi \quad \text{for} \quad \gamma \in H_2(T, \mathbb{Z}).$$

We let τ denote the covering transformation $T \to T$ over S so that $\tau^2 = \text{id}$. Since S has no holomorphic 2-form, we have $\tau^* \psi = -\psi$. On the other hand, τ acts on $H_2(T, \mathbb{Z})$ as an involution. If γ is invariant by τ, then the above integral (1) vanishes. Therefore the periods of ψ are determined by the integrals (1) over those 2-cycles γ satisfying $\tau \gamma = -\gamma$. Our main result is that the isomorphism class of S is uniquely determined by these periods. A more precise statement will be given in § 4. Details will be published elsewhere.

§ 2. Elliptic surfaces of index 2. It is known that an Enriques surface S has a structure of an elliptic surface (see [1], [8]). That is, there exists a surjective holomorphic map $g: S \to \mathbb{P}_1$ whose general fibre C is an elliptic curve. Moreover there exists a divisor G on S with $CG=2$. From Kodaira's formula for the canonical bundles of elliptic surfaces ([6], p. 772), it follows that g has two multiple fibres, both being of multiplicity 2. We view S as an elliptic curve over the function field of \mathbb{P}_1. Then G is a divisor of degree 2 on this curve. Hence G defines a rational map f_1 of degree 2 of S onto a rational ruled surface W_1. This map induces, for each generic fibre C, a double covering $C \to \mathbb{P}_1$ which is ramified at 4 points. Let B_1 be the branch