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The entitled theorem reads as follows" If the differential equation
( 1 ) dw/dz=R(z, w) (R is a rational function of z and w)
has a transcendental meromorphic solution w(z), then the equation
must be of the Riccati type, i.e., R(z, w) must be a polynomial of the
second degree in w.

In 1933 the present author gave, as an application of the Nevanlinna
theory ([5]) o meromorphic unctions, another proof of this striking
theorem o J. lVialmquist [4] dating 1913. In this proo (Yosida [9]
and [10]), a decisive role was played by a theorem o G. Valiron [6]:
( 2 ) T(r, R(z, w(z))1) --d. T(r, w(z))+ O(log r),
where d is the degree in w o R(z, w). In 1950, H. Wittich ([7] and
[8]) gave an alternate proo which is based upon the act that the order
o the meromorphic unction w(z) is finite and that its proximity func-
tion re(r, w(z)) is O(log r). Recently in 1974, E. Hille ([2] and [3]) gave
another approach proposing a geometric argument instead o Wittich’s
estimation via the calculus o residues. It is to be noted here that,
for the finiteness of the order o the meromorphic solution w(z), the
author gave in 1934 a straightforward proof ([10], Theorem 7) relying
upon the T. Shimizu-L. Ahlors-H. Cartan interpretation (see, e.g.,
[5], 165-) o the Nevanlinna characteristic T(r, w(z)).

In view of the above, I should like to show that my original idea
in [9] and [10] can be pursued to the result without appealing to the
theorem of Valiron nor to the Wittich-Hille type estimation.

We may assume that
( 3 ) R(z, w)=P(z, w)/Q(z, w)= (]$_-0 pj(z)wJ)/(,q=o q(z)w)
with polynomial coefficients p’s and q’s such that p(z).qq(z)O and
w-polynomials P(z, w) and Q(z, w) have no actos in common. By
virtue of the defect relation in the Nevanlinna theory, we have

1) We shall follow notations in [1]:

f(z))-(2)-1 ’o log If(re.0)] 48, N(r, f(z))T(r, f(z))-m(r, f(z))+N(r, f(z)),

_It t-(n(t, f(z))--n(O, f(z)))dt+n(O, f(z)).log r, where n(r, (f(z)) denotes the number

of poles of f(z) for Iz[_r, multiple poles being counted with the multiplicity.


