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That the Reuleaux triangle consisting of three circular arcs of radius
is a curve of constant breadth with minimum area was geometrically

proved by Prof. Blaschke in Mathematische Annalen 76,1915. The aim
of this note is to prove this theorem analytically.

Take a point on a given curve C of constant breadth as the orion
and a supporting line (Stiitzgerade) at this point as the initial line.
Then the curve C may be represented by the polar-tangential equation
of the form p=(O), where (0)=p(0)=0. As already shown by Prof.
Kakeya,) the curve of constant breadth is characterized by the
relations

Ii,(O)sinOdO=a, IiP(O) cosO d---O,

0 _-<: p(O) a, p(O) +p(8+) a,

where p(O) denotes the radius of curvature and satisfies

[(?)--p()+p"(), p(O)=I:,() sin(O--)d.

The area S of 6’ being equal to 1 our prblern may

be formulated analytically as follows-

S 1 o(O)o(f) sin(O-f) df=Ninimum,

1) Fujiwara-Kakeva, On some problems of maxima and minima for the curve of
constant breadth and th in-revolvable curve of the equilateral triangle, Thoku Math.
Journ.. (1917).


