16. A New Concept of Integrals, II.1)

By Shin-ichi Izumi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. Fujiwara, M.I.A., Feb. 12, 1934.)

- 7. Let f(x) be almost everywhere finite in (a, b). $M^*(x)$ is called a major* function of f(x) in (a, b), if it satisfies the following conditions:
 - 1°. $M^*(x)$ is (τ) -approximately continuous in the closed interval $[a, b], (\tau > \frac{1}{2}).$
 - 2° . $M^*(a)=0$.
- 3°. (a, b) is covered by a system of enumerable perfect sets $\{P_i\}$, except an enumerable set at most, such that

3°. 1.
$$ADM_i(x) > -\infty$$

with the possible exception of an enumerable set in P_i ,

3°. 2.
$$A\underline{D}M_i(x) \geq f(x)$$

with the possible exception of an enumerable set in P_i , where $M_i(x)$ is defined such that

$$M_i(x) = M^*(x)$$
, for x in P_i and for $x = a$, $x = b$,

and $M_i(x)$ is linear in the contiguous intervals of P_i .

4°. For any perfect subset Q_i of P_i , $N_i(x)$, defined as $M_i(x)$, taking Q_i instead of P_i , has the corresponding properties of $M_i(x)$.

Similarly, a minor* function $m^*(x)$ is defined. $M^*(x)$ and $m^*(x)$ are called the associated* functions of f(x) in (a, b).

Theorem 21. If f(x) is defined in (a, b), and $M^*(x)$ and $m^*(x)$ are the associated* functions of f(x), then $M^*(x) - m^*(x)$ is a positive non-decreasing function. In particular,

$$M^*(b) \geq m^*(b)$$
.

Suppose that f(x) is defined and is almost everywhere finite in (a, b), and the associated* functions $M^*(x)$ and $m^*(x)$ of f(x) exist.

If we put

 $I_1^*(b)$ = lower bound of all $M^*(b)$,

and

 $I_2^*(b)$ = upper bound of all $m^*(b)$,

then they are finite and

¹⁾ In the first paper (this volume, No. 10, pp. 570-574), I have to correct the following points: 1°. In Theorem 2 and 3, read $\tau > \frac{1}{2}$ for $\tau > 0$; 2°. To the last of Theorem 6, add $(\tau > \frac{1}{2})$.