14. Kinematic Connections and Their Application to Physics.

By Tôyomon HOSOKAWA.

Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1934.)

Recently a new physical theory has been developed by O. Veblen,¹⁾ J. A. Schouten²⁾ and others in which the principal point is founded on a projective connection. In the present paper we shall develop some connections in the manifold admitting the kinematic transformations, and shall give a unification of the gravitational field not only with the electromagnetic, but also with Dirac's theory of material waves.

Let the equations

(1. a) $\overline{x}^i = \overline{x}^i (x^0, x^1, x^2, x^3, x^4), \quad i = 1, 2, 3, 4,$

be the transformations of the coördinates in X_4 , where x^0 is a parameter, and we shall define the transformation of the parameter by

(1. b) $\overline{x}^0 = x^0$.

These transformations (1. a) and (1. b) are collectively called a *kinematic* transformation in the manifold X_4 .

The kinematic transformation (1. a), (1. b) can be regarded as follows. An ordered set of the five independent real variables x^{ν} $(\nu=0, 1, 2, 3, 4)$,³⁾ of which at least one is not zero may be considered as a coördinate system of a 5-dimensional manifold X_5 except the original point. Two points x^{ν} and y^{ν} are called coincident if a factor exists, so that $y^{\nu} = \sigma x^{\nu}$. Each totality of all points coincident with any point is called a spot. The totality of all ∞^4 spots is called the 4dimensional projective manifold P_4 . The set of all points of the P_4 , with the exception of those on a single 3-dimensional projective manifold P_3 contained in the P_4 , is called the affine manifold A_4 . By choosing the P_3 as the hyperplane at infinity, the equation of the P_3 may be written in the form $x^0=0$. Thus (1. a) and (1. b) are transformations of coördinates in A_4 , and by them P_3 is transformed into itself.

¹⁾ O. Veblen; Projektive Relativitätstheorie. Julius Springer, 1933.

²⁾ J. A. Schouten und D. van Dantzig: Generelle Feldtheorie, Zeit. für Physik, **78** (1932), 639–667.

³⁾ Let us make the convention that Greek indices run over the range 0, 1, 2, 3, 4, whereas the Latin indices take on the values 1, 2, 3, 4 only.