4. A General Convergence Theorem.

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Jan. 12. 1935.)

1. S. Bochner¹⁾ proved the following theorems:

Theorem 1. If $f(\xi)$ is bounded in $(-\infty, +\infty)$ and $K(\xi)$ is absolutely integrable in $(-\infty, +\infty)$, then we have

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f\left(x+\frac{\xi}{n}\right)K(\xi)d\xi=f(x)\int_{-\infty}^{\infty}K(\xi)d\xi.$$
 (1)

Theorem 2. If (1°) $f(\xi)$ is absolutely integrable in $(-\infty, +\infty)$, (2°) $f(\xi)$ is continuous at $\xi = x$, (3°) $K(\xi)$ is absolutely integrable in $(-\infty, +\infty)$, (4°) $K(\xi)$ is bounded in $(-\infty, +\infty)$ and (5°) $K(\xi) = o(|\xi|^{-1})$ as $|\xi| \to \infty$, then we have (1).

In this paper the following associated theorem is proved :

Theorem 3. If (1°) $\frac{f(\xi)}{1+|\xi|}$ and $\frac{f^2(\xi)}{1+|\xi|}$ are absolutely integrable in $(-\infty, +\infty)$, (2°) $f(\xi)$ is continuous at $\xi = x$ and (3°) $K(\xi)$ and $\xi K^2(\xi)$ are absolutely integrable in $(-\infty, +\infty)$, then we have (1).

2. We begin with some lemmas.

Lemma 1. If $h(\eta)$ is absolutely integrable in $(-\infty, +\infty)$ and $h(\eta)$ tends continuously to a limit $h(-\infty)$ as $\eta \to -\infty$, then we have

$$\lim_{\nu \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} h(\eta - \nu) \frac{\sin^2 \lambda(\xi - \eta)}{\lambda(\xi - \eta)^2} d\eta = h(-\infty), \qquad (2)$$

boundedly for any ξ in $(-\infty, +\infty)$, λ being a fixed constant.

Proof. Without loss of generality, we may suppose that $h(-\infty)=0$.

$$J = \int_{-\infty}^{\infty} h(\eta - \nu) \frac{\sin^2 \lambda(\xi - \eta)}{\lambda(\xi - \eta)^2} d\eta$$

=
$$\int_{-\infty}^{\infty} h(\zeta) \frac{\sin^2 \lambda(\xi - \zeta - \nu)}{\lambda(\xi - \zeta - \nu)^2} d\zeta$$

=
$$\int_{-\infty}^{A} + \int_{A}^{\infty} h(\zeta) \frac{\sin^2 \lambda(\xi - \zeta - \nu)}{\lambda(\xi - \zeta - \nu)^2} d\zeta$$

=
$$J_1 + J_2, \quad \text{say.}$$

¹⁾ S. Bochner: Fouriersche Integral, 1933. Cf. T. Takahashi and S. Izumi: Science Reports, Tohoku Univ., 1934.