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1. The problem and the theorem.

Let 3t denote the set of all the matrices of a fixed degree, say n,
with complex numbers as coefficients. We introduce a topology in 3t
by the absolute value

If @, a subset of non-singular matriees e 9t, is a group with respect
to the matrix-multiplication, it is a topological group by the distanee

The topologieal group @ is called a Lie group, if there exist a
finite number, say m, of elements Xx, Xz, X e R which satisfy
the eonditions

1). X, Xz, X are linearly independent with real coefficients.

2). exp (Y, X) e @, * real.D

3). There exists a positive, such that any element A e 3 may be
represented uniquely in the form

A =exp (] tX), t real,

iliA-E]<= e (E the unit-matrix of ).
By a theorem of J. von Neumannz) ( is a Lie group if and only

if it is loeally eompaet. Here, for eonvention, a discrete group is also
ealled a Lie group. If @ is a Lie group, the set of all the elements
] X, real, satisfies"
i-1

(a). is a real linear space which has a finite base with real
eoeffieients, viz, Xx, X., X.

(). IX, Y] XY- YXe with X, Ye .
is called the Lie ring of the Lie group @, the two ring-opera-

tions being the vector-addition and the eommufator-multiplieaion IX, Y].
It is the set of all the differential quotients of @ at E3’ The differ-

of * at E is defined by lim ((A,-E)/,), whereential quotient

A(:E) e 3 and real , (0) are sueh that limA,=E, lim ,=0.

1) exp (X): Y] (Xn/n !).

2) See K. Yosida: Jap. J. of Math. 13 (1936), p. 7. Neumann’s original statement
(M. Z. 30 (1929), p. 3) reads as follows:

( is a Lie group if is closed in the group of all the non-singular matrices e .
3) CL K. Yosida: loc. cit.


