PAPERS COMMUNICATED

60. On the Contractions of Extensors.

By Akitsugu KAWAGUCHI.

Research Institute for Geometry, Hokkaido Imperial University, Sapporo. (Comm. by S. KAKEYA, M.I.A., July 12, 1938.)

It is well known that any function $\mathscr{O}(v^i, w_j)$ of the components of any two vectors, one of which v^i is contravariant and the other w_j covariant, is to be the function $\mathscr{V}(\rho)$ of only their scalar product $\rho = v^i w_i$, if it is not only a scalar but also invariant in its functional form under every regular point transformation of class ω , that is, $\mathscr{O}(v^i, w_j) =$ $\mathscr{O}(v^r, w_s)$. This fact shows that there exists essentially one and only one scalar product of two vectors v^i, w_j .

In connection with the extended point transformation

$$x^{i} = x^{i}(x^{r}), \qquad x^{\prime i} = \frac{\partial x^{i}}{\partial x^{r}} x^{\prime r}, \qquad i = 1, 2, ..., N$$
$$x^{\prime \prime i} = \frac{\partial x^{i}}{\partial x^{r}} x^{\prime \prime r} + \frac{\partial^{2} x^{i}}{\partial x^{r} \partial x^{s}} x^{\prime r} x^{\prime s}, \qquad x^{(M)i} = \frac{\partial x^{i}}{\partial x^{r}} x^{(M)r} + \cdots,$$

the extensor due to H.V. Craig¹⁾ is defined, for example, by the relationship

 $T_{s:\ \beta t}^{ar} = T_{j:\ \delta k}^{\gamma i} X_{(\gamma)i}^{(a)r} X_{s}^{j} X_{(\beta)t}^{(\delta)k} \qquad \alpha, \beta, \gamma = 0, 1, ..., M,$

where we put

$$X_s^j = \frac{\partial x^j}{\partial x^s}, \qquad X_{(r)i}^{(a)r} = \frac{\partial x^{(a)r}}{\partial x^{(r)i}}.$$

The following relations hold for $X_{(\gamma)i}^{(a)r}$

(1)
$$X^{(a)r}_{(\beta)i}X^{(\beta)i}_{(\gamma)s} = \delta^a_{\gamma}\delta^r_s, \qquad X^{(a)r}_{(\gamma)u} = X^{(a)r}_{(\beta)i}X^{(\beta)i}_{(\gamma)u}$$

(2) $X_{(\beta)i}^{(a)r} = 0$ for $\alpha < \beta$

$$= \binom{a}{\beta} X_i^{r(a-\beta)}$$
 for $a \ge \beta$.²⁾

Although there is only one kind of contraction $\rho = v^i w_i$ for the ordinary vectors v^i , w_j , for the extensors $V^{\alpha i}$, $W_{\beta j}$ we have not one but M+1 kinds of contraction:

(3)
$$\rho^{[a]} = \sum_{\beta=a}^{M} {\beta \choose a} V^{\beta-a, i} W_{\beta i}.$$

¹⁾ H. V. Craig, On tensors relative to the extended point transformation, American Journal of Mathematics, **59** (1937), 764-774.

²⁾ $X_i^{r(a-\beta)}$ means $\frac{d^{a-\beta}}{dt^{a-\beta}}X_i^r$ and we adopt the notation $F^{(a)} = \frac{d^a F}{dt^a}$ through this paper.