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1. Let K(x,y) be bounded and measurable in the square
0 1, 0 y 1. Consider the integral operator K which trans-
forms the Banach space (L)) in (L).

(1) f--, Kf=g" g(y)=Ilof(X) K(x, y)dx.
It is to be noted that such an operator is not always completely con-
tinuous in (L). This may be shown by an example ( 3). We can,
however, prove the following

Theorem 1. Let N(z, y) and K(z, y) be bounded and measurable
in 0 x 1, 0 y 1. Then the integral operator P defined by the

bounded Kernel P(x, y)= 0N(x, z) K(z, y)dz is completely continuous as

an operator which maps (L) in (L).
Remark. The integral operator (1) may also be considered as a

linear operator which maps (L) in (M), (M) in (M) or (M) in (L).
Proof of Theorem 1 Denote by N and K the integral operators

which correspond to the kernels N(x, y) and K(x, y) respectively. P
may be considered as a combination of two operators N and K per-
formed successively in this order, where N is an operator which maps
(L) in (M) and K is the one which maps (M) in (L)" fe (L)--, Nf=
g e (M) --. Kg(=Pf)=h e (L).

The unit sphere IIflI 1 of (L) is mapped by N on a set con-
tained in the sphere g llM <= n of (M), where n=l. u. b. IN(x, y) !.

0<_, /<:1
Hence it is sufficient to prove the

Theorem 2. The integral operator K with bounded kernel K(x, y)
is completely continuous as an operator which maps (M) in (L).

Proof" We extend the definition domain of K(x, y) to the infinite
square oo <2 x <:+ o, oo <: y <:+ oo, by putting K(x, y) 0 if the
point (x, y) is outside the square 0 x 1, 0 y 1. Let Kg h,
where g e (M), g IIM 1. By Fubuni-Tonelli’s theorem, we have

1) (L)is the space of all the measurable functions f(x) which are absolutely

integrable in 0 __< z 1. For any fe (L), we define its norm by IlfllL If(x) ldx.
0

2) A linear operator which maps the Banach space E in another Banach space E
is called to be completely continuous if it maps the unit sphere i! 1 of E on a
compact (in E) set of E,.

3) (M) is the space of all the bounded measurable functions defined in 0 =< z 1.
For any fe(M) we define its norm by IlfllM--ess. max. If@)]-


