PAPERS COMMUNICATED

90. Integral Operator with Bounded Kernel.

By Kôsaku YOSIDA, Yukio MIMURA and Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., Dec. 12, 1938.)

§ 1. Let K(x, y) be bounded and measurable in the square $0 \le x \le 1$, $0 \le y \le 1$. Consider the integral operator K which transforms the Banach space $(L)^{1}$ in (L).

(1)
$$f \to Kf = g: \quad g(y) = \int_0^1 f(x) K(x, y) dx.$$

It is to be noted that such an operator is not always completely continuous²⁾ in (L). This may be shown by an example (§ 3). We can, however, prove the following

Theorem 1. Let N(x, y) and K(x, y) be bounded and measurable in $0 \le x \le 1$, $0 \le y \le 1$. Then the integral operator P defined by the bounded Kernel $P(x, y) = \int_0^1 N(x, z) K(z, y) dz$ is completely continuous as an operator which maps (L) in (L).

Remark. The integral operator (1) may also be considered as a linear operator which maps (L) in (M),³⁾ (M) in (M) or (M) in (L).

Proof of Theorem 1: Denote by N and K the integral operators which correspond to the kernels N(x, y) and K(x, y) respectively. P may be considered as a combination of two operators N and K performed successively in this order, where N is an operator which maps (L) in (M) and K is the one which maps (M) in (L): $f \in (L) \rightarrow Nf =$ $g \in (M) \rightarrow Kg(=Pf) = h \in (L)$.

The unit sphere $||f||_L \leq 1$ of (L) is mapped by N on a set contained in the sphere $||g||_M \leq n$ of (M), where $n = 1, \dots, b, |N(x, y)|$. Hence it is sufficient to prove the

Theorem 2. The integral operator K with bounded kernel K(x, y) is completely continuous as an operator which maps (M) in (L).

Proof: We extend the definition domain of K(x, y) to the infinite square $-\infty < x < +\infty$, $-\infty < y < +\infty$, by putting K(x, y)=0 if the point (x, y) is outside the square $0 \le x \le 1$, $0 \le y \le 1$. Let Kg=h, where $g \in (M)$, $\|g\|_{M} \le 1$. By Fubuni-Tonelli's theorem, we have

1) (L) is the space of all the measurable functions f(x) which are absolutely integrable in $0 \le x \le 1$. For any $f \in (L)$, we define its norm by $||f||_L = \int_0^1 |f(x)| dx$.

3) (M) is the space of all the bounded measurable functions defined in $0 \le x \le 1$. For any $f \in (M)$ we define its norm by $||f||_M = \underset{0 \le x \le 1}{\operatorname{ess. max.}} |f(x)|$.

²⁾ A linear operator which maps the Banach space E_1 in another Banach space E_2 is called to be completely continuous if it maps the unit sphere $||x|| \leq 1$ of E_1 on a compact (in E_2) set of E_2 .