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79. Concircular Geometry Il. Integrability
Conditions of p,,=¢9,,.
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In a previous paper entitled Concircular geometry I,” we have con-
sidered, in a Riemannian space, curves defined by
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which may be regarded as a generalization of circles in ordinary eucli-
dean space, and we have called them geodesic circles. If a conformal
transformation
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of the fundamental metric tensor g, transforms any geodesic circle
into a geodesic circle, then the functiou p must satisfy the following
partial differential equations
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We have called such a conformal transformation a concircular trans-
formation.

In the present Note, we shall consider the integrability conditions®
of the partial differential equations (0.3).

§1. The function p satisfying the equations

(1.1) Pu:v—PuPrt —;—gaBPaPﬁgyv =0Guw »
where the semi-colon denotes the covariant derivative, we have
(1-2) Pu; v_p#py=¢g/w ’
where
(1.3) ¢=¢——;—g“‘*papa .
Consequently, putting
(1.4) pi=g"p,,
we obtain, from (1.2),
(1.5) PP =P+ pap®) .
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