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1. Let a set G of elements a, b, c, ..., satisfy the following axioms"
(I) There exists an operation in G which associates with each pair

a, b of G an element c of G, i.e., a.b=c.
(2) The operation satisfies the associative law"

(a. b). (c. d)= (a. c). (b- d).

(3) If a, b, c are any given elements, each of the equations a.x=c
and x. b=c is uniquely soluble in G for x..

As an example, we show that a real linear function of two real
variables x, y, i.e.,

x

satisfies the above axioms (1), (2), (3). Conversely, we shall prove
Theorem 1). The set G forms an abelian group with respect to

the new operation x+y=z which is defined by the equation

a.s+r.b=a.b,

where r and s denote two fixed elements in G.
Furthermore, the operation x.y of G is expressed as a linear rune-

tion of x, y with respect to the new operation such that

x.y=Ax+By+c

where A and B denote the automorphisms of G and are mutually per-
nutable, that is, AB=BA, and c is a fixed element in G.

Next, let us consider a set G* of elements a, b, c, ..., which satisfies
the axioms (1), (2) and the axiom

(3*) There exists at least one unit element 0 in G*, i.e., 0.0=0
and, if a is any given element, each of the equations x.O=a and
O. x=a has at least one solution in G* for x.

As examples, we show that the sum (or product) of two sets a, b
of points, i.e.,

a.b=a-b40
and a linear differential expression of two real functions x(t), y(t) of a
real variable t, i, e.,
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