3. Note on the Fundamental Domain of a General Fuchsian Group.

By Masao SUGAWARA. Tokyo Bunrika Daigaku, Tokyo. (Comm. by T. TAKAGI, M.I.A., Jan. 12, 1942.)

Let R be the general Poincaré-space $(Z; N(Z) \leq 1)^{1}$ and $W = (U_1Z + U_2) (U_3Z + U_4)^{-1}$ be a displacement of a general fuchsian group \mathfrak{B} ; namely

$$U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}, \qquad U'S\bar{U} = S, \qquad S = \begin{pmatrix} E_m & 0 \\ 0 & -E_n \end{pmatrix}.$$

Definition. When $U_3 \neq 0$, we denote the domain $(Z; ||U_3Z+U_4|| \ge 1)$ by the symbol M(U). A point Z is an inner or a boundary or an outer point of M(U) according as $||U_3Z+U_4|| > 1$ or =1 or <1.

Theorem 1. 1°. If $U_3 \neq 0$, $|E - \overline{W}'W|$ is greater than, equals to, or smaller than $|E - \overline{Z}'Z|$ according as Z is an outer or a boundary or an inner point of M(U); the converse also holds.

2°. If however $U_3=0$, $|E-\overline{W}'W|=|E-\overline{Z}'Z|$. Proof. 1°. It comes from the equality

$$||U_3Z+U_4||^{-2}=|E-\overline{W}'W||E-\overline{Z}'Z|^{-1}$$
 ,

which I deduced in another place²).

2. In this case $W = U_1 Z U_4^{-1}$, where U_1 and U_4 are unitary, so that the result is evident.

We denote the intersection of R and all the domains M(U) by M. Theorem 2. Let Z_0 be a point which gives the maximum value of $|E - \overline{Z}'Z|$ among the points equivalent to Z_0 and let D be the set of such points as Z_0 , then D = M.

Proof. Let Z_1 be an inner point of the space R, the number of such points Z equivalent to Z_1 that give $|E - \overline{Z}'Z| \ge |E - \overline{Z}_1'Z_1|$ is finite, because the series

$$\sum_{U \subset \mathfrak{E}} \; | \; U_3 Z \! + \! U_4 |^{-k(n+m)} \, , \qquad k \ge 2^{3)} \, ,$$

is absolutely convergent at an inner point of R.

As a point equivalent to an inner point of R is also an inner point of R, the maximum value of the expression $|E - \overline{Z}'Z|$ is really taken at an inner point of R equivalent to Z_1 .

On the other hand, a point equivalent to a boundary point of R is also a boundary point of R and it is always $|E-\overline{Z'}Z|=0$, when N(Z)=1. Now let $Z \in M$ and let Y be a point equivalent to Z, namely $Y=(U_1Z+U_2)(U_3Z+U_4)$, then $|E-\overline{Z'}Z| \ge |E-\overline{Y'}Y|$, if $U_3 \ge 0$, and

¹⁾ N(Z) means the norm of Z.

²⁾ M. Sugawara. On the general Zetafuchsian Functions,

³⁾ In the case of symmetrical matrices the exponent is -k(n+1).