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D.H. Hyersm has introdueed the notion of absolute value into
loeally bounded linear topologieal spaees, and proved that the absolute
value is upper semi-eontinuous, while J.v. Wehausenn showed that a
linear topological spaee is metrizable as an F-metric if and only if it
satisfies the first eountability axiom. Since every loeally bounded linear
topological space satisfies the first countability axiom, it is metrizable
as an F-metric. But all F-metric spaces are not neeessarily locally
bounded. Henee the problem arises: what metrie spaces are equivalent
to loeally bounded linear topologieal spaces ?

In this paper we introduce a lower or upper semi-continuous ab-
solute value into Ioeally bounded linear opologieal space and give a
condition that the absolute value is continuous. We define F%ormed
spaces and prove that they are equivalent to loeally bounded linear
topological spaces.

1. Definitions and lemmas.

Definition 1. A linear space L is called a linear topological space
if there exists a family 1I of sets U L satisfying following conditions"

1) The intersection of all the sets e 11 is
2) If U, Ve 1I there exists We 11 such that W U V.
3) If Ue 11 there exists Ve 1I such that V+V U.-)

4) If Ue 11 there exists Ve 11 such that [-1, 1IV U.)
5) If x eL, Ue 1I there exists real such that x eaU.
Definition 2. A linear topological space L is called locally bounded

if 1I satisfies
6) There exists a bounded set) V of 1I.
Lemma 1. if we put H-- [- 1, 1] V, then

1) [- 1, 1]H=H.
2) 0 implies H H.
3) H is bounded.
4) For every a, 0, a+fl=l there exists a constant k 1

independent of a, fl such that all+H kH.
5) Let 1I* (all}, a O. Then 1I* is equivalent to 11.

1) (} is the set consisting of zero element t only.
2) If S, T L, S+T is the set of all x+y, where x e S, y e T.
3) [-1,1IV is the set of all ax such as -lagl, xeV.
4) A set S in a linear topological space will be called bounded if for any Ue 11

there is a number a such as S aU. (v. Neumann) This is the same to say that for
and sequence xn} S and any real sequence (an) converging to 0, the sequence
(anXn} converges to 8. (Banach and Kolmogoroff)


