13. On the Cluster Set of a Meromorphic Function.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by YOSIE, M.I.A., Feb. 12, 1943.)

1. Let Δ be a bounded domain on the z-plane and z_0 be a nonisolated accessible boundary point on the boundary Γ of Δ . We denote the part of Δ , Γ in $|z-z_0| \leq r$ by Δ_r , Γ_r respectively and the part of $|z-z_0|=r$, which lies in Δ by θ_r . Let w=f(z) be one-valued and meromorphic in Δ and W_r be the set of values taken by f(z) in Δ_r and \overline{W}_r be its closure. Then

$$\lim_{r \to 0} \overline{W}_r = H_d(z_0) \tag{1}$$

is called the cluster set of f(z) in \varDelta at z_0 .

Let $\zeta(\pm z_0) \in \Gamma$ and $H_{\Delta}(\zeta)$ be the cluster set of f(z) at ζ and

 $V_r(\Gamma) = \sum H_d(\zeta)$, added for all $\zeta(\pm z_0)$ on Γ_r (2)

and $\overline{V}_r(\Gamma)$ be its closure. Then

$$\lim_{r \to 0} \overline{V}_r(\Gamma) = H_{\Gamma}(z_0) \tag{3}$$

is called the cluster set of f(z) on Γ at z_0 .

It is obvious that $H_{d}(z_{0}) > H_{\Gamma}(z_{0})$. Iversen¹⁾ proved that every boundary point of $H_{d}(z_{0})$ belongs to $H_{\Gamma}(z_{0})$.

Let $\zeta \in \Gamma$. If for any $\varepsilon > 0$, there exists a neighbourhood U of ζ , such that $|f(z)| \leq m + \varepsilon$ in U, then we will write: $|f(\zeta)| \leq m$. Then as an immediate consequence of the Iversen's theorem, we have²: Let f(z) be regular and bounded in Δ . If $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 on Γ , then $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 in Δ .

I will here extend the Iversen's theorem in the following way.

Let *E* be a closed set of capacity zero on Γ and $z_0 \in E$ and $U(\Gamma - E) \neq 0$ for any neighbourhood *U* of z_0 . We denote the part of *E* in $|z-z_0| \leq r$ by E_r . Let

$$V_r(\Gamma - E) = \sum H_A(\zeta)$$
, added for all $\zeta(\pm z_0)$ on $\Gamma_r - E_r$ (4)

and $\overline{V}_r(\Gamma - E)$ be its closure. Then

¹⁾ F. Iversen: Sur quelques propriétes des fonctions monogènes au voisinage d'un point singulier. Öfv. af Finska Vet-Soc. Förh. **58** (1916).

K. Kunugui: Sur un théorème de MM. Seidel-Beurling. Proc. 15 (1939),—Sur l'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de définition. Jap. Jour. Math. 18 (1942).

K. Noshiro: On the theory of cluster sets of the analytic functions. Jour. Fac. Sci. Hokkaido Imp. Univ. 6 (1938),—On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).

²⁾ K. Kunugui, l. c.