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The purpose of this note is to give a simple and new proof to the
existence of an independent product measure on a Cartesian infinite
product space.

Let {(27,®B",m")|reI'} be a family of measure spaces satisfying
m'(L")=1 for each r e I, where we mean by a measure space (£, B, m)
a triple of a space 2 (without topology), a Borel field B of subsets B
of 2, and a countably additive measure m(B) defined on B (with
0<m(LQ)<< o). We shall first define a measure space (2% B*, m*)
which we call the independent product measure space of the family
{(2,B",m")|rel}.

The space 2*, which is symbolically denoted as

(1) =P, re"
is the set of all I'-sequences (or functions defined on ")
() w*={w"|rel}
such that " € £ for each rer.
A subset R* of 2* is called rectangular if it is of the form:
(3) R*=B"x - X B XPrer_{ry.nrn} 2

where B'ie ¥, i=1,...,n, and {7y, ..., 7.} is an arbitrary finite system
of elements from I. R* is, by definition, the set of all w*= {w"|7el } € 2*
such that «"ie B for 2=1,...,n. The family of all rectangular sets
R* of £* is denoted by R*.

Further, a subset E* of £* is called elementary if it is of the
form:

@ E*=U.R}

where R} e R* for i=1,...,n. We may assume that the R} in (4)
are mutually disjoint. This follows from the fact that the intersection
of two rectangular set of 2* is again rectangular, and that the com-
plementary of a rectangular set of 2* is expressible as the union of a
finite number of mutually disjoint rectangular sets of 2*. The family
of all elementary sets E* of 2* is denoted by ¢*. It is clear that G*
is a field.
We shall next define a set function m*(R*) on R* by

(5) m*(R*)___mr:(Bn) X eee X m’n(BT”)
if R* is of the form (3), and then m*(E*) on &* by
(6) m*(E*)=3rm*(R})



