144 [Vol. 19,

31. On the Semi-ordered Ring and its Application to the Spectral Theorem. II.

By Kôsaku Yosida and Tadasi Nakayama. Mathematical Institute, Nagoya Imperial University. (Comm. by T. Takagi, M.I.A., March 12, 1943.)

In the first place, our note¹⁾ "On the semi-ordered ring and its application to the spectral theorem" contained, in its proof of algebraic part, a falsy argument, which we shall correct here. Namely, its lemma in §1 (p. 557) was incorrect; it ought to have referred only to a normal subgroup generated by positive elements. The following revised proof runs more or less in the same line as Vernikoff-Krein-Tovbin's,²⁾ but we may put emphasis on that neither associativity (nor commutativity) nor ring property is used; we simply deal with abelian groups with operators. Indeed, as an application of such mode of our approach, we can determine the structure of the additive group of bounded automorphisms of a semi-ordered abelian group (satisfying certain conditions); this forming the second purpose of the present supplementary note.

Let G be a semi-ordered abelian group with real multipliers³⁾, such that⁴⁾

- (i) if $x \ge 0$ and $y \ge 0$ then $x+y \ge 0$,
- (ii) if $x \ge 0$ and $-x \ge 0$ then x = 0,
- (iii) if $x \ge 0$ and α (real number) ≥ 0 then $\alpha x = 0$.

Let G possess further an operator domain $Q = \{A\}$ which is by itself a semi-ordered abelian group (in the same sense as G) such as

- (vii) if $x \ge 0$ (in G), $A \ge 0$ (in Ω) then $Ax \ge 0$ (in G),
- (viii) (A+B)x = Ax + Bx, A(x+y) = Ax + Ay, A(ax) = aAx,

and let moreover

(ix) $\mathcal Q$ possess an Archimedean unit I which satisfies Ix=x, $x\in G$. Then we have

Lemma. Every normal subgroup of G generated by a certain system of positive elements is always allowable with respect to Ω . For, our former proof remains valid certainly in this case.

Suppose now

(iv) G itself possess an Archimedean unit e,

¹⁾ Proc. 18 (1942), 555.

²⁾ Sur les anneaux semi-ordonnés, C. R. URSS, 30 (1941), p. 758.

³⁾ Cf. a remark below

⁴⁾ The numbers for the conditions are in accordance with our former note.