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In the first place, our noteD "On the semi-ordered ring and its
application to the spectral theorem" contained, in its proof of algebraic
part, a falsy argument, which we shall correct here. Namely, its lemma
in 1 (p. 557) was incorrect; it ought to have referred only to a
normal subgroup generated by positive elements. The following revised
proof runs more or less in the same line as Vernikoff-Krein-Tovbin’s,)

but we may put emphasis on that neither associativity (nor commuta-
tivity) nor ring property is used; we simply deal with abelian groups
with operators. Inde_ed, as an application of such mode of our approach,
we can determine the structure of the additive group of bounded
automorphisms of a semi-ordered abelian group (satisfying certain con-
ditions); this forming the second purpose of the pesent supplementary
note.

Let G be a semi-ordered abelian group with real multipliers:, such
that4)

(i)

(ii)

if x0 and y0 then z+y0,

if x0 and -x0 then x=O,

(iii) if x0 and .(real number)0 then ax=0.

Let G possess further an operator domain .2= (A} which is by itself
a semi-ordered abelian group (in the same sense as G) such as

(vii) if x0 (in G), A0 (in /2) then AxO (in G),

(viii) (A+B)x=Ax+Bx, A(x+y)=Ax+Ay, A(ax)=,.zAx,

and let moreover

(ix) .q possess an Archimedean unit I which satisfies Ix=x, x e G.

Then we have
Lemma. Every normal subgroup of G generated by a certain system

of positive elements is always allowable with respect to
For, our former proof remains valid certainly in this case.

Suppose now

(iv) G itself possess an Archimedean unit e,

1) Proc. 18 (1942), 555.
2) Sur les anneaux semi-ordonns, C.R. URSS, 30 (1941), p. 758.
3) Cf. a remark below
4) The numbers for the conditions are in accordahce with our former note.


