No. 3.]

PAPERS COMMUNICATED

21. Notes on Banach Space (V): Compactness of Function Spaces.

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., March 12, 1943.)

1. We have proved¹⁾ already

Theorem 1. A set \mathfrak{F} in (C) (=family of continuous functions in (0,1)) is compact when and only when

1°. To is uniformly bounded,

2°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly for all x in (0,1) and for all f in \mathcal{F} ,

Theorem 2. A set \mathfrak{F} in (M) (=family of essentially bounded measurable functions in (0,1)) is compact when and only when 1° and

3°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly almost everywhere for all x in (0,1) and for all f in F.

On the other hand Phillips²⁾ proved a compactness theorem in Banach space, whence he derived the Kolmogoroff-Tulajkoff theorem concerning compactness in (L^n) $(p \ge 1)$. The latter theorem reads as follows

Theorem 3. A set \mathfrak{F} in (L^p) $(p \ge 1)$ (=family of measurable functions whose p-th power is integrable in (0,1)) is compact when and only when

4°. for f in \mathfrak{F} $\int_0^1 |f(t)|^p dt$ is uniformly bounded,

5°. $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^{\delta} f(x+t)dt = f(x)$ uniformly in the L^p -mean.

Concerning space (S) we proved in § 3

Theorem 4. A set \mathfrak{F} in (S) (=family of measurable functions in (0,1)) is compact when and only when

6°. $\underset{(\delta,N)}{\operatorname{asy}} \cdot \lim_{\delta} \frac{1}{\delta} \int_{0}^{\delta} \left(f(x+t) \right)^{N} dt = f(x)$ uniformly for f in \mathfrak{F} , where $\underset{(\delta,N)}{\operatorname{asy}} \cdot \lim_{\delta \to \infty}$ is the Moore-Smith limit in measure and

$$(f(t))^N = f(t)$$
 if $|f(t)| \le N$ and $= 0$, otherwise.

Summing up above results we get

Theorem 5. A set \mathfrak{F} in E where E is (C), (M), (L^p) $(p \ge 1)$ or (S), is compact when and only when

7°. \Re is bounded concerning metric in E,

¹⁾ S. Izumi, Proc. 15 (1938).

²⁾ R. Phillips, Trans. Am. Math. Sor., vol. 44 (1940).