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The object of this paper is to give general representation theorems
of linear operations from a Banach space to another where one is a
concrete Banach space. In this direction there are many results due to
GelfandD, Kantorovitch-Vulich2), Kantorovitch3 and Phillips, etc. In

3-4 their results are all generalized and simplified. Our problem is
closely connected with the integration theory. In 2 we define abstract
integrals using idea of yon Neumann and Dunford5). These integrals
are used in the representation theorems. In 1 we state notations
and theorems which are used throughout the paper.

1. Notations and theorems due to Dunford.
Let X be a Banach space of numerical functions (t), where t

ranges over an abstract set T such that
1. if (t)+2(t)=(t) for all t in T, then +.=,
2. if c(t)=(t) for a constant c and for all t in T, then
3. if -* and (t)--,*(t) for all t in T, then =*,
4. if , then (t)--* q(t) for all t in T.
Examples of such X are c, (lp co), C,B, AC and V

(1 p co) where V denotes the space of all completely additive set
functions on an abstract set. In the following X denotes always such
Banach space. But in 1-2 we need not the condition 4. Since L
(1 p oo) satisfies conditions 1-3, the results in 1-2 are applicable
to such spaces.

Let Y be an arbitrary Banach space and F a closed linear manifold
in F. The linear space i X(Y, F) is, by definition, the space of all
abstract functions y(.)=y(t) on T to Y such that rf(.) lies in X for
every )" in F. y(.) and )’y(.) represent points in the function space
from T to Y and X, respectively.

The following theorems are due to Dunford. We prove them for
the sake of completeness.

(1.1) If y(. e X(Y, F), then y(. is a linear operation on F to X.
In other words there exists a smallest non-negative number
such that

ry(.)Ilx = y(. )Ii. 7" (r e F).
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