27. Construction of a Non-separable Extension of the Lebesgue Measure Space.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 13, 1944.)

§ 1. A measure space $(\mathcal{Q}, \mathfrak{B}, m)$ is a triple of a space $\mathcal{Q} = \{\omega\}$, a Borel field $\mathfrak{B} = \{B\}$ of subsets B of \mathcal{Q} , and a countably additive measure m(B) defined on \mathfrak{B} with $0 < m(\mathcal{Q}) < \infty$. In case \mathcal{Q} is the interval $\{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers ω , \mathfrak{B} is the Borel field of all Lebesgue measurable subsets B of \mathcal{Q} , and m(B) is the ordinary Lebesgue measure with $m(\mathcal{Q})=1$, $(\mathcal{Q},\mathfrak{B},m)$ is called the Lebesgue measure space.

For any measure space $(\mathcal{Q}, \mathfrak{B}, m)$, let $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ be the smallest cardinal number of a subfamily \mathfrak{A} of \mathfrak{B} with the following property: for any $\varepsilon > 0$ and for any $B \in \mathfrak{B}$ there exists an $A \in \mathfrak{A}$ such that $m(B \ominus A) < \varepsilon$, where we denote by $B \ominus A$ the symmetric difference $B \cup A - B \cap A$ of B and A. On the other hand, let $L^2(\mathcal{Q}, \mathfrak{B}, m)$ be the generalized Hilbert space of all real-valued \mathfrak{B} measurable functions $x(\omega)$ defined on \mathcal{Q} which are square integrable on \mathcal{Q} with $||x|| = \left(\int_{\mathfrak{Q}} |x(\omega)|^2 m(d\omega)\right)^{\frac{1}{2}}$ as its norm. Then it is easy to see that $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ is equal with the *dimension* of $L^2(\mathcal{Q}, \mathfrak{B}, m)$ in case the latter is infinite, where we understand by the dimension of $L^2(\mathcal{Q}, \mathfrak{B}, m)$. We shall call $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m)$ the *character* of a measure space $(\mathcal{Q}, \mathfrak{B}, m)$.

A measure space $(\mathcal{Q}, \mathfrak{B}, m)$ is metrically separable if $\mathfrak{p}(\mathcal{Q}, \mathfrak{B}, m) \leq \aleph_0$. This is equivalent to saying that $L^2(\mathcal{Q}, \mathfrak{B}, m)$ is separable as a metric space with d(x, y) = ||x-y|| as its distance function. It is clear that the Lebesgue measure space is metrically separable.

A measure space $(\mathcal{Q}', \mathfrak{B}', m')$ is an extension of another measure space $(\mathcal{Q}, \mathfrak{B}, m)$ if $\mathcal{Q}' = \mathcal{Q}, \mathfrak{B}' \geq \mathfrak{B}$ and m'(B) = m(B) on \mathfrak{B} . The purpose of this paper is to prove, by constructing an example, the following

Proposition. There exists a metrically non-separable extension of the Lebesgue measure space whose character is 2° .

32. We begin with some lemmas:

Lemma 1. Let S be an arbitrary set with $\mathfrak{p}(S) = \mathfrak{c}^{1}$. Then there exists a family $\mathfrak{S} = \{S_r | r \in \Gamma\}$ of subsets S_r of S with the following properties:

(1) $\mathfrak{p}(\mathfrak{S}) \equiv \mathfrak{p}(\Gamma) = 2^{\mathfrak{c}}$,

¹⁾ $\mathfrak{p}(S)$ denotes the cardinal number of a set S,