130. On Hopf's Ergodic Theorem.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by S. KAKEYA, M.I.A., Nov. 13, 1944.)

1. Let *E* be a measurable set of points in |z| < 1. We define its hyperbolic measure $\sigma(E)$ by $\sigma(E) = \iint_E \frac{r dr d\theta}{(1-r^2)^2}$ $(z=re^{i\theta})$. Similarly the hyperbolic length $\lambda(C)$ of a rectifiable curve *C* is defined by $\lambda(C) = \int_C \frac{|dz|}{1-|z|^2}$.

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain, which contains $z_0=0$ and is bounded by at most enumerably infinite number of orthogonal circles to |z|=1, z_n be equivalents of $z_0=0$ and n(r) be the number of z_n in $|z| \leq r$. For any z in |z| < 1, we denote its equivalent in D_0 by (z). Let $E(\theta)$ be the set of points $(re^{i\theta})$ in D_0 , which are equivalent to points on a radius $z=re^{i\theta}$ $(0 \leq r < 1)$. In my former paper¹⁰, I have proved :

Theorem 1. (i) If $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$, then $E(\theta)$ is everywhere dense in D_0 for almost all $e^{i\theta}$ on |z|=1, (ii) If $\sum_{n=0}^{\infty} (1-|z_n|) < \infty$, then $\lim_{n \to 1} |(re^{i\theta})| = 1$ for almost all $e^{i\theta}$ on |z|=1.

Theorem 2. The necessary and sufficient condition that there exists a set e on |z|=1, which is invariant by G and $0 < me < 2\pi$, is that $\sum_{n=0}^{\infty} (1-|z_n|) < \infty$.

Theorem 1 (i) is an extension of Myrberg's theorem²⁾, who assumed that D_0 lies with its boundary entirely in |z| < 1, in which case, it is easily proved that $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$.

2. Let $\eta_1 = e^{i\theta}$, $\eta_2 = e^{i\varphi}$ be two points on |z| = 1, |w| = 1 respectively. Then the pair (η_1, η_2) can be considered as a point on a torus $\mathcal{Q}(0 \leq \theta \leq 2\pi, 0 \leq \varphi \leq 2\pi)$. For any measurable set E on \mathcal{Q} , we define its measure mE by $mE = \iint_E d\theta d\varphi$, so that $m\mathcal{Q} = 4\pi^2$.

Let S be any substitution of G and $T: \gamma'_1 = S(\gamma_1), \gamma'_2 = S(\gamma_2)$, then the totality of T constitutes a group \mathfrak{G} , which is isomorphic to G. Hopf proved the theorem³⁾:

¹⁾ M. Tsuji: Theory of conformal mapping of a multiply connected domain, III. Jap. Journ. Math. **19** (1944).

²⁾ Myrberg: Ein Satz über die Fuchsschen Gruppen und seine Anwendungen in der Funktionentheorie. Annales Academie Sci. Fennicae. **32** (1929).

³⁾ E. Hopf: Fuchsian groups and ergodic theory. Trans. Amer. Math. Soc. **39** (1936). Ergodentheorie. Berlin (1937).