The *p*-adic Finite Fourier Transform and Theta Functions

G. Van Steen

A polarization on an abelian variety A induces an isogeny between A and its dual variety \hat{A} . The kernel of this isogeny is a direct sum of two isomorphic subgroups. If A is an analytic torus over a non-archimedean valued field then it is possible to associate with each of these subgroups a basis for a corresponding space of theta functions, cf. [5], [6].

The relation between these bases is given by a finite Fourier transform. Similar results hold for complex abelian varieties, cf. [3].

The field k is algebraically closed and complete with respect to a non-archimedean absolute value. The residue field with respect to this absolute value is \overline{k} .

1 The finite Fourier transform

In this section we consider only finite abelian groups whose order is not divisible by $char(\overline{k})$.

For such a group A we denote by \hat{A} the group of k-characters of A, i.e. $\hat{A} = Hom(A, k^*)$. The vector space of k valued functions on A is denoted as V(A).

Lemma 1.1 Let A_1 and A_2 be finite abelian groups. Then $(\widehat{A_1 \times A_2})$ is isomorphic with $\widehat{A_1} \times \widehat{A_2}$.

Proof The map $\theta : \widehat{A_1} \times \widehat{A_2} \to \widehat{A_1} \times \widehat{A_2}$, defined by $\theta(\chi, \tau)(a_1, a_2) = \chi(a_1) \cdot \tau(a_2)$ is an isomorphism.

Bull. Belg. Math. Soc. 4 (1997), 539-548

Received by the editors January 1996.

Communicated by A. Verschoren.

¹⁹⁹¹ Mathematics Subject Classification : 14K25,14G20.

Key words and phrases : theta functions, p-adic.